{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,7]],"date-time":"2025-04-07T12:25:19Z","timestamp":1744028719677},"reference-count":57,"publisher":"Springer Science and Business Media LLC","issue":"7756","license":[{"start":{"date-parts":[[2019,4,8]],"date-time":"2019-04-08T00:00:00Z","timestamp":1554681600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nature"],"published-print":{"date-parts":[[2019,5]]},"DOI":"10.1038\/s41586-019-1127-1","type":"journal-article","created":{"date-parts":[[2019,4,8]],"date-time":"2019-04-08T16:04:09Z","timestamp":1554739449000},"page":"361-367","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":340,"title":["The emergent landscape of the mouse gut endoderm at single-cell resolution"],"prefix":"10.1038","volume":"569","author":[{"given":"Sonja","family":"Nowotschin","sequence":"first","affiliation":[]},{"given":"Manu","family":"Setty","sequence":"additional","affiliation":[]},{"given":"Ying-Yi","family":"Kuo","sequence":"additional","affiliation":[]},{"given":"Vincent","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Vidur","family":"Garg","sequence":"additional","affiliation":[]},{"given":"Roshan","family":"Sharma","sequence":"additional","affiliation":[]},{"given":"Claire S.","family":"Simon","sequence":"additional","affiliation":[]},{"given":"Nestor","family":"Saiz","sequence":"additional","affiliation":[]},{"given":"Rui","family":"Gardner","sequence":"additional","affiliation":[]},{"given":"St\u00e9phane C.","family":"Boutet","sequence":"additional","affiliation":[]},{"given":"Deanna M.","family":"Church","sequence":"additional","affiliation":[]},{"given":"Pamela A.","family":"Hoodless","sequence":"additional","affiliation":[]},{"given":"Anna-Katerina","family":"Hadjantonakis","sequence":"additional","affiliation":[]},{"given":"Dana","family":"Pe\u2019er","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,4,8]]},"reference":[{"key":"1127_CR1","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1146\/annurev.cellbio.042308.113344","volume":"25","author":"AM Zorn","year":"2009","unstructured":"Zorn, A. M. & Wells, J. M. Vertebrate endoderm development and organ formation. Annu. Rev. Cell Dev. Biol. 25, 221\u2013251 (2009).","journal-title":"Annu. Rev. Cell Dev. Biol."},{"key":"1127_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/B978-0-12-381280-3.00001-4","volume":"96","author":"KD Tremblay","year":"2010","unstructured":"Tremblay, K. D. Formation of the murine endoderm: lessons from the mouse, frog, fish, and chick. Prog. Mol. Biol. Transl. Sci. 96, 1\u201334 (2010).","journal-title":"Prog. Mol. Biol. Transl. Sci"},{"key":"1127_CR3","doi-asserted-by":"publisher","first-page":"1063","DOI":"10.1242\/dev.128314","volume":"143","author":"C Chazaud","year":"2016","unstructured":"Chazaud, C. & Yamanaka, Y. Lineage specification in the mouse preimplantation embryo. Development 143, 1063\u20131074 (2016).","journal-title":"Development"},{"key":"1127_CR4","doi-asserted-by":"publisher","first-page":"420","DOI":"10.1016\/j.gde.2010.05.008","volume":"20","author":"S Nowotschin","year":"2010","unstructured":"Nowotschin, S. & Hadjantonakis, A. K. Cellular dynamics in the early mouse embryo: from axis formation to gastrulation. Curr. Opin. Genet. Dev. 20, 420\u2013427 (2010).","journal-title":"Curr. Opin. Genet. Dev."},{"key":"1127_CR5","doi-asserted-by":"publisher","first-page":"1146","DOI":"10.1038\/ncb3070","volume":"16","author":"M Viotti","year":"2014","unstructured":"Viotti, M., Nowotschin, S. & Hadjantonakis, A. K. SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat. Cell Biol. 16, 1146\u20131156 (2014).","journal-title":"Nat. Cell Biol."},{"key":"1127_CR6","doi-asserted-by":"publisher","first-page":"124","DOI":"10.1002\/dvg.20695","volume":"49","author":"M Viotti","year":"2011","unstructured":"Viotti, M., Nowotschin, S. & Hadjantonakis, A. K. Afp:mCherry, a red fluorescent transgenic reporter of the mouse visceral endoderm. Genesis 49, 124\u2013133 (2011).","journal-title":"Genesis"},{"key":"1127_CR7","doi-asserted-by":"publisher","first-page":"509","DOI":"10.1016\/j.devcel.2008.07.017","volume":"15","author":"GS Kwon","year":"2008","unstructured":"Kwon, G. S., Viotti, M. & Hadjantonakis, A. K. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev. Cell 15, 509\u2013520 (2008).","journal-title":"Dev. Cell"},{"key":"1127_CR8","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1002\/dvdy.21810","volume":"238","author":"RI Sherwood","year":"2009","unstructured":"Sherwood, R. I., Chen, T. Y. & Melton, D. A. Transcriptional dynamics of endodermal organ formation. Dev. Dyn. 238, 29\u201342 (2009).","journal-title":"Dev. Dyn."},{"key":"1127_CR9","first-page":"92","volume-title":"BMC Dev. Biol.","author":"J Hou","year":"2007","unstructured":"Hou, J. et al. A systematic screen for genes expressed in definitive endoderm by Serial Analysis of Gene Expression (SAGE). BMC Dev. Biol. 7, 92 (2007)."},{"key":"1127_CR10","doi-asserted-by":"crossref","unstructured":"Setty, M. et al. Palantir characterizes cell fate continuities in human hematopoiesis. Preprint at https:\/\/www.biorxiv.org\/content\/early\/2018\/08\/05\/385328 (2018).","DOI":"10.1101\/385328"},{"key":"1127_CR11","doi-asserted-by":"publisher","first-page":"451","DOI":"10.1038\/s41587-019-0068-4","volume":"37","author":"M Setty","year":"2019","unstructured":"Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat. Biotechnol. 37, 451\u2013460 (2019).","journal-title":"Nat. Biotechnol."},{"key":"1127_CR12","doi-asserted-by":"publisher","first-page":"2549","DOI":"10.1002\/dvdy.20843","volume":"235","author":"GS Kwon","year":"2006","unstructured":"Kwon, G. S. et al. Tg(Afp-GFP) expression marks primitive and definitive endoderm lineages during mouse development. Dev. Dyn. 235, 2549\u20132558 (2006).","journal-title":"Dev. Dyn."},{"key":"1127_CR13","doi-asserted-by":"publisher","first-page":"1293","DOI":"10.1016\/j.cell.2018.05.060","volume":"174","author":"E Azizi","year":"2018","unstructured":"Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293\u20131308 (2018).","journal-title":"Cell"},{"key":"1127_CR14","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1016\/j.cell.2015.05.047","volume":"162","author":"JH Levine","year":"2015","unstructured":"Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184\u2013197 (2015).","journal-title":"Cell"},{"key":"1127_CR15","doi-asserted-by":"publisher","first-page":"545","DOI":"10.1038\/nbt.2594","volume":"31","author":"E-aD Amir","year":"2013","unstructured":"Amir, E.-a. D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545\u2013552 (2013).","journal-title":"Nat. Biotechnol."},{"key":"1127_CR16","doi-asserted-by":"publisher","first-page":"637","DOI":"10.1038\/nbt.3569","volume":"34","author":"M Setty","year":"2016","unstructured":"Setty, M. et al. Wishbone identifies bifurcating developmental trajectories from single-cell data. Nat. Biotechnol. 34, 637\u2013645 (2016).","journal-title":"Nat. Biotechnol."},{"key":"1127_CR17","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1038\/s41556-017-0013-z","volume":"20","author":"X Ibarra-Soria","year":"2018","unstructured":"Ibarra-Soria, X. et al. Defining murine organogenesis at single-cell resolution reveals a role for the leukotriene pathway in regulating blood progenitor formation. Nat. Cell Biol. 20, 127\u2013134 (2018).","journal-title":"Nat. Cell Biol."},{"key":"1127_CR18","doi-asserted-by":"publisher","first-page":"845","DOI":"10.1038\/nmeth.3971","volume":"13","author":"L Haghverdi","year":"2016","unstructured":"Haghverdi, L., B\u00fcttner, M., Wolf, F. A., Buettner, F. & Theis, F. J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 13, 845\u2013848 (2016).","journal-title":"Nat. Methods"},{"key":"1127_CR19","doi-asserted-by":"publisher","first-page":"eaar3131","DOI":"10.1126\/science.aar3131","volume":"360","author":"JA Farrell","year":"2018","unstructured":"Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131 (2018).","journal-title":"Science"},{"key":"1127_CR20","doi-asserted-by":"publisher","first-page":"3081","DOI":"10.1242\/dev.021519","volume":"135","author":"B Plusa","year":"2008","unstructured":"Plusa, B., Piliszek, A., Frankenberg, S., Artus, J. & Hadjantonakis, A. K. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135, 3081\u20133091 (2008).","journal-title":"Development"},{"key":"1127_CR21","doi-asserted-by":"publisher","first-page":"615","DOI":"10.1016\/j.devcel.2006.02.020","volume":"10","author":"C Chazaud","year":"2006","unstructured":"Chazaud, C., Yamanaka, Y., Pawson, T. & Rossant, J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10, 615\u2013624 (2006).","journal-title":"Dev. Cell"},{"key":"1127_CR22","doi-asserted-by":"publisher","first-page":"393","DOI":"10.1016\/j.ydbio.2010.12.007","volume":"350","author":"J Artus","year":"2011","unstructured":"Artus, J., Piliszek, A. & Hadjantonakis, A. K. The primitive endoderm lineage of the mouse blastocyst: sequential transcription factor activation and regulation of differentiation by Sox17. Dev. Biol. 350, 393\u2013404 (2011).","journal-title":"Dev. Biol."},{"key":"1127_CR23","doi-asserted-by":"publisher","first-page":"722","DOI":"10.1016\/j.cell.2009.07.039","volume":"138","author":"J Silva","year":"2009","unstructured":"Silva, J. et al. Nanog is the gateway to the pluripotent ground state. Cell 138, 722\u2013737 (2009).","journal-title":"Cell"},{"key":"1127_CR24","doi-asserted-by":"publisher","first-page":"454","DOI":"10.1016\/j.devcel.2014.04.011","volume":"29","author":"N Schrode","year":"2014","unstructured":"Schrode, N., Saiz, N., Di Talia, S. & Hadjantonakis, A. K. GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev. Cell 29, 454\u2013467 (2014).","journal-title":"Dev. Cell"},{"key":"1127_CR25","doi-asserted-by":"publisher","first-page":"104","DOI":"10.1016\/j.ydbio.2018.06.017","volume":"441","author":"SM Morgani","year":"2018","unstructured":"Morgani, S. M. et al. A Sprouty4 reporter to monitor FGF\/ERK signaling activity in ESCs and mice. Dev. Biol. 441, 104\u2013126 (2018).","journal-title":"Dev. Biol."},{"key":"1127_CR26","doi-asserted-by":"publisher","first-page":"511","DOI":"10.1016\/j.devcel.2017.05.004","volume":"41","author":"A Molotkov","year":"2017","unstructured":"Molotkov, A., Mazot, P., Brewer, J. R., Cinalli, R. M. & Soriano, P. Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency. Dev. Cell 41, 511\u2013526 (2017).","journal-title":"Dev. Cell"},{"key":"1127_CR27","doi-asserted-by":"publisher","first-page":"496","DOI":"10.1016\/j.devcel.2017.05.003","volume":"41","author":"M Kang","year":"2017","unstructured":"Kang, M., Garg, V. & Hadjantonakis, A. K. Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev. Cell 41, 496\u2013510 (2017).","journal-title":"Dev. Cell"},{"key":"1127_CR28","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1038\/ncb2881","volume":"16","author":"Y Ohnishi","year":"2014","unstructured":"Ohnishi, Y. et al. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16, 27\u201337 (2014).","journal-title":"Nat. Cell Biol."},{"key":"1127_CR29","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1242\/dev.084996","volume":"140","author":"M Kang","year":"2013","unstructured":"Kang, M., Piliszek, A., Artus, J. & Hadjantonakis, A. K. FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 140, 267\u2013279 (2013).","journal-title":"Development"},{"key":"1127_CR30","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1242\/dev.125.1.85","volume":"125","author":"PQ Thomas","year":"1998","unstructured":"Thomas, P. Q., Brown, A. & Beddington, R. S. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125, 85\u201394 (1998).","journal-title":"Development"},{"key":"1127_CR31","doi-asserted-by":"publisher","first-page":"287","DOI":"10.1016\/S1097-2765(00)80331-7","volume":"4","author":"C Meno","year":"1999","unstructured":"Meno, C. et al. Mouse Lefty2 and zebrafish Antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol. Cell 4, 287\u2013298 (1999).","journal-title":"Mol. Cell"},{"key":"1127_CR32","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1016\/S0925-4773(97)00125-1","volume":"68","author":"JA Belo","year":"1997","unstructured":"Belo, J. A. et al. Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 68, 45\u201357 (1997).","journal-title":"Mech. Dev."},{"key":"1127_CR33","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1038\/nrm2618","volume":"10","author":"SJ Arnold","year":"2009","unstructured":"Arnold, S. J. & Robertson, E. J. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10, 91\u2013103 (2009).","journal-title":"Nat. Rev. Mol. Cell Biol."},{"key":"1127_CR34","doi-asserted-by":"publisher","first-page":"S97","DOI":"10.1016\/S0925-4773(03)00099-6","volume":"119","author":"S Hayashi","year":"2002","unstructured":"Hayashi, S., Lewis, P., Pevny, L. & McMahon, A. P. Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech. Dev. 119, S97\u2013S101 (2002).","journal-title":"Mech. Dev."},{"key":"1127_CR35","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1002\/dvg.20522","volume":"47","author":"GS Kwon","year":"2009","unstructured":"Kwon, G. S. & Hadjantonakis, A. K. Transthyretin mouse transgenes direct RFP expression or Cre-mediated recombination throughout the visceral endoderm. Genesis 47, 447\u2013455 (2009).","journal-title":"Genesis"},{"key":"1127_CR36","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1002\/dvg.20335","volume":"45","author":"MD Muzumdar","year":"2007","unstructured":"Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593\u2013605 (2007).","journal-title":"Genesis"},{"key":"1127_CR37","doi-asserted-by":"publisher","first-page":"743","DOI":"10.1038\/ncb2251","volume":"13","author":"K Takaoka","year":"2011","unstructured":"Takaoka, K., Yamamoto, M. & Hamada, H. Origin and role of distal visceral endoderm, a group of cells that determines anterior\u2013posterior polarity of the mouse embryo. Nat. Cell Biol. 13, 743\u2013752 (2011).","journal-title":"Nat. Cell Biol."},{"key":"1127_CR38","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1016\/j.ydbio.2011.10.013","volume":"361","author":"A Paca","year":"2012","unstructured":"Paca, A. et al. BMP signaling induces visceral endoderm differentiation of XEN cells and parietal endoderm. Dev. Biol. 361, 90\u2013102 (2012).","journal-title":"Dev. Biol."},{"key":"1127_CR39","doi-asserted-by":"publisher","first-page":"3885","DOI":"10.1242\/dev.065656","volume":"138","author":"M Kruithof-de Julio","year":"2011","unstructured":"Kruithof-de Julio, M. et al. Regulation of extra-embryonic endoderm stem cell differentiation by Nodal and Cripto signaling. Development 138, 3885\u20133895 (2011).","journal-title":"Development"},{"key":"1127_CR40","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1016\/j.ydbio.2011.10.015","volume":"361","author":"J Artus","year":"2012","unstructured":"Artus, J. et al. BMP4 signaling directs primitive endoderm-derived XEN cells to an extraembryonic visceral endoderm identity. Dev. Biol. 361, 245\u2013262 (2012).","journal-title":"Dev. Biol."},{"key":"1127_CR41","doi-asserted-by":"publisher","first-page":"3879","DOI":"10.1242\/dev.150193","volume":"144","author":"M Serra","year":"2017","unstructured":"Serra, M. et al. Pluripotent stem cell differentiation reveals distinct developmental pathways regulating lung- versus thyroid-lineage specification. Development 144, 3879\u20133893 (2017).","journal-title":"Development"},{"key":"1127_CR42","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/S0925-4773(01)00412-9","volume":"106","author":"MB Becker","year":"2001","unstructured":"Becker, M. B., Z\u00fclch, A., Bosse, A. & Gruss, P. Irx1 and Irx2 expression in early lung development. Mech. Dev. 106, 155\u2013158 (2001).","journal-title":"Mech. Dev."},{"key":"1127_CR43","doi-asserted-by":"publisher","first-page":"602","DOI":"10.1016\/j.mod.2013.08.002","volume":"130","author":"Y Yang","year":"2013","unstructured":"Yang, Y., Akinci, E., Dutton, J. R., Banga, A. & Slack, J. M. Stage specific reprogramming of mouse embryo liver cells to a beta cell-like phenotype. Mech. Dev. 130, 602\u2013612 (2013).","journal-title":"Mech. Dev."},{"key":"1127_CR44","doi-asserted-by":"crossref","first-page":"983","DOI":"10.1242\/dev.122.3.983","volume":"122","author":"MF Offield","year":"1996","unstructured":"Offield, M. F. et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983\u2013995 (1996).","journal-title":"Development"},{"key":"1127_CR45","doi-asserted-by":"publisher","first-page":"1045","DOI":"10.1242\/dev.138453","volume":"144","author":"YH Tsai","year":"2017","unstructured":"Tsai, Y. H. et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 144, 1045\u20131055 (2017).","journal-title":"Development"},{"key":"1127_CR46","doi-asserted-by":"publisher","first-page":"2931","DOI":"10.1242\/dev.01897","volume":"132","author":"J Deschamps","year":"2005","unstructured":"Deschamps, J. & van Nes, J. Developmental regulation of the Hox genes during axial morphogenesis in the mouse. Development 132, 2931\u20132942 (2005).","journal-title":"Development"},{"key":"1127_CR47","doi-asserted-by":"publisher","first-page":"621","DOI":"10.1016\/j.devcel.2016.08.012","volume":"38","author":"A Gregorio Di","year":"2016","unstructured":"Di Gregorio, A., Bowling, S. & Rodriguez, T. A. Cell competition and its role in the regulation of cell fitness from development to cancer. Dev. Cell 38, 621\u2013634 (2016).","journal-title":"Dev. Cell"},{"key":"1127_CR48","doi-asserted-by":"publisher","first-page":"131","DOI":"10.1016\/j.devcel.2013.09.026","volume":"27","author":"R Hiramatsu","year":"2013","unstructured":"Hiramatsu, R. et al. External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos. Dev. Cell 27, 131\u2013144 (2013).","journal-title":"Dev. Cell"},{"key":"1127_CR49","doi-asserted-by":"publisher","first-page":"958","DOI":"10.1242\/dev.140731","volume":"144","author":"HA McCauley","year":"2017","unstructured":"McCauley, H. A. & Wells, J. M. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development 144, 958\u2013962 (2017).","journal-title":"Development"},{"key":"1127_CR50","doi-asserted-by":"publisher","first-page":"716","DOI":"10.1016\/j.cell.2018.05.061","volume":"174","author":"D Dijk van","year":"2018","unstructured":"van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716\u2013729 (2018).","journal-title":"Cell"},{"key":"1127_CR51","unstructured":"Behringer, R. G. M., Nagy, K. V. and Nagy, A. Manipulating the Mouse Embryo: A Laboratory Manual, 4th edn (Cold Spring Harbor Laboratory, Cold Spring Harbor, 2014)."},{"key":"1127_CR52","doi-asserted-by":"crossref","first-page":"1255","DOI":"10.1242\/dev.118.4.1255","volume":"118","author":"KM Downs","year":"1993","unstructured":"Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118, 1255\u20131266 (1993).","journal-title":"Development"},{"key":"1127_CR53","doi-asserted-by":"publisher","first-page":"1945","DOI":"10.1016\/j.celrep.2013.04.034","volume":"3","author":"SM Morgani","year":"2013","unstructured":"Morgani, S. M. et al. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Reports 3, 1945\u20131957 (2013).","journal-title":"Cell Reports"},{"key":"1127_CR54","doi-asserted-by":"publisher","DOI":"10.1038\/ncomms14049","volume":"8","author":"GH Zheng","year":"2017","unstructured":"Zheng, G. H. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).","journal-title":"Nat. Commun."},{"key":"1127_CR55","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1093\/bioinformatics\/bts635","volume":"29","author":"A Dobin","year":"2013","unstructured":"Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15\u201321 (2013).","journal-title":"Bioinformatics"},{"key":"1127_CR56","doi-asserted-by":"publisher","first-page":"e1003118","DOI":"10.1371\/journal.pcbi.1003118","volume":"9","author":"M Lawrence","year":"2013","unstructured":"Lawrence, M. et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).","journal-title":"PLoS Comput. Biol"},{"key":"1127_CR57","doi-asserted-by":"publisher","DOI":"10.1186\/s13059-014-0550-8","volume":"15","author":"MI Love","year":"2014","unstructured":"Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).","journal-title":"Genome Biol."}],"container-title":["Nature"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.nature.com\/articles\/s41586-019-1127-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/www.nature.com\/articles\/s41586-019-1127-1","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/www.nature.com\/articles\/s41586-019-1127-1.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,20]],"date-time":"2023-05-20T21:55:01Z","timestamp":1684619701000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41586-019-1127-1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4,8]]},"references-count":57,"journal-issue":{"issue":"7756","published-print":{"date-parts":[[2019,5]]}},"alternative-id":["1127"],"URL":"https:\/\/doi.org\/10.1038\/s41586-019-1127-1","relation":{},"ISSN":["0028-0836","1476-4687"],"issn-type":[{"value":"0028-0836","type":"print"},{"value":"1476-4687","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,4,8]]},"assertion":[{"value":"14 November 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"29 March 2019","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 April 2019","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"S.C.B. and D.M.C. are employees and shareholders at 10x Genomics.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}