{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,27]],"date-time":"2025-03-27T20:21:45Z","timestamp":1743106905744,"version":"3.37.3"},"reference-count":56,"publisher":"Springer Science and Business Media LLC","issue":"7622","license":[{"start":{"date-parts":[[2016,9,1]],"date-time":"2016-09-01T00:00:00Z","timestamp":1472688000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nature"],"published-print":{"date-parts":[[2016,9]]},"DOI":"10.1038\/nature19769","type":"journal-article","created":{"date-parts":[[2016,9,20]],"date-time":"2016-09-20T15:12:36Z","timestamp":1474384356000},"page":"694-697","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":537,"title":["Rewriting yeast central carbon metabolism for industrial isoprenoid production"],"prefix":"10.1038","volume":"537","author":[{"given":"Adam L.","family":"Meadows","sequence":"first","affiliation":[]},{"given":"Kristy M.","family":"Hawkins","sequence":"additional","affiliation":[]},{"given":"Yoseph","family":"Tsegaye","sequence":"additional","affiliation":[]},{"given":"Eugene","family":"Antipov","sequence":"additional","affiliation":[]},{"given":"Youngnyun","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Lauren","family":"Raetz","sequence":"additional","affiliation":[]},{"given":"Robert H.","family":"Dahl","sequence":"additional","affiliation":[]},{"given":"Anna","family":"Tai","sequence":"additional","affiliation":[]},{"given":"Tina","family":"Mahatdejkul-Meadows","sequence":"additional","affiliation":[]},{"given":"Lan","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Lishan","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Madhukar S.","family":"Dasika","sequence":"additional","affiliation":[]},{"given":"Abhishek","family":"Murarka","sequence":"additional","affiliation":[]},{"given":"Jacob","family":"Lenihan","sequence":"additional","affiliation":[]},{"given":"Diana","family":"Eng","sequence":"additional","affiliation":[]},{"given":"Joshua S.","family":"Leng","sequence":"additional","affiliation":[]},{"given":"Chi-Li","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jared W.","family":"Wenger","sequence":"additional","affiliation":[]},{"given":"Hanxiao","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Lily","family":"Chao","sequence":"additional","affiliation":[]},{"given":"Patrick","family":"Westfall","sequence":"additional","affiliation":[]},{"given":"Jefferson","family":"Lai","sequence":"additional","affiliation":[]},{"given":"Savita","family":"Ganesan","sequence":"additional","affiliation":[]},{"given":"Peter","family":"Jackson","sequence":"additional","affiliation":[]},{"given":"Robert","family":"Mans","sequence":"additional","affiliation":[]},{"given":"Darren","family":"Platt","sequence":"additional","affiliation":[]},{"given":"Christopher D.","family":"Reeves","sequence":"additional","affiliation":[]},{"given":"Poonam R.","family":"Saija","sequence":"additional","affiliation":[]},{"given":"Gale","family":"Wichmann","sequence":"additional","affiliation":[]},{"given":"Victor F.","family":"Holmes","sequence":"additional","affiliation":[]},{"given":"Kirsten","family":"Benjamin","sequence":"additional","affiliation":[]},{"given":"Paul W.","family":"Hill","sequence":"additional","affiliation":[]},{"given":"Timothy S.","family":"Gardner","sequence":"additional","affiliation":[]},{"given":"Annie E.","family":"Tsong","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2016,9,21]]},"reference":[{"key":"BFnature19769_CR1","doi-asserted-by":"publisher","first-page":"528","DOI":"10.1038\/nature12051","volume":"496","author":"CJ Paddon","year":"2013","unstructured":"Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528\u2013532 (2013)","journal-title":"Nature"},{"key":"BFnature19769_CR2","unstructured":"Fisher, K. & Woolard, F. X. Farnesene dimers and\/or farnesane dimers and compositions thereof. US patent 8,669,403 (2014)"},{"key":"BFnature19769_CR3","doi-asserted-by":"publisher","first-page":"51","DOI":"10.1002\/9783527656639.ch3","volume":"Ch. 3","author":"D McPhee","year":"2013","unstructured":"McPhee, D. in Catalytic Process Development for Renewable Materials (eds Imhof, P. & van der Waal, J. C. ) Ch. 3, 51\u201379 (Wiley-VCH, 2013)","journal-title":"Catalytic Process Development for Renewable Materials"},{"key":"BFnature19769_CR4","unstructured":"McPhee, D. J. Compositions comprising a farnesene interpolymer. US patent 7,868,114 (2011)"},{"key":"BFnature19769_CR5","first-page":"25","volume":"250","author":"SJ Schofer","year":"2014","unstructured":"Schofer, S. J. et al. Biofene, a renewable monomer for elastomer materials with novel properties: polymer development, characterization and use. Rubber World 250, 25\u201330 (2014)","journal-title":"Rubber World"},{"key":"BFnature19769_CR6","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1016\/j.biotechadv.2008.10.006","volume":"27","author":"F Garcia-Ochoa","year":"2009","unstructured":"Garcia-Ochoa, F. & Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv. 27, 153\u2013176 (2009)","journal-title":"Biotechnol Adv."},{"key":"BFnature19769_CR7","doi-asserted-by":"publisher","first-page":"398","DOI":"10.1016\/j.copbio.2013.03.023","volume":"24","author":"J Nielsen","year":"2013","unstructured":"Nielsen, J., Larsson, C., van Maris, A. & Pronk, J. Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 24, 398\u2013404 (2013)","journal-title":"Curr. Opin. Biotechnol."},{"key":"BFnature19769_CR8","doi-asserted-by":"publisher","first-page":"1703","DOI":"10.1016\/j.procbio.2011.05.012","volume":"46","author":"SS Chandran","year":"2011","unstructured":"Chandran, S. S., Kealey, J. T. & Reeves, C. D. Microbial production of isoprenoids. Process Biochem. 46, 1703\u20131710 (2011)","journal-title":"Process Biochem."},{"key":"BFnature19769_CR9","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1007\/BF00582119","volume":"59","author":"C Verduyn","year":"1991","unstructured":"Verduyn, C., Stouthamer, A. H., Scheffers, W. A. & van Dijken, J. P. A theoretical evaluation of growth yields of yeasts. Antonie van Leeuwenhoek 59, 49\u201363 (1991)","journal-title":"Antonie van Leeuwenhoek"},{"key":"BFnature19769_CR10","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1016\/j.ymben.2016.03.006","volume":"36","author":"HM van Rossum","year":"2016","unstructured":"van Rossum, H. M., Kozak, B. U., Pronk, J. T. & van Maris, A. J. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae: pathway stoichiometry, free-energy conservation and redox-cofactor balancing. Metab. Eng. 36, 99\u2013115 (2016)","journal-title":"Metab. Eng."},{"key":"BFnature19769_CR11","doi-asserted-by":"publisher","first-page":"1061","DOI":"10.1016\/j.copbio.2013.03.002","volume":"24","author":"S Van Dien","year":"2013","unstructured":"Van Dien, S. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr. Opin. Biotechnol. 24, 1061\u20131068 (2013)","journal-title":"Curr. Opin. Biotechnol."},{"key":"BFnature19769_CR12","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1016\/S0021-9258(18)70463-8","volume":"231","author":"EC Heath","year":"1958","unstructured":"Heath, E. C., Hurwitz, J., Horecker, B. L. & Ginsburg, A. Pentose fermentation by Lactobacillus plantarum. I. The cleavage of xylulose 5-phosphate by phosphoketolase. J. Biol. Chem. 231, 1009\u20131029 (1958)","journal-title":"J. Biol. Chem."},{"key":"BFnature19769_CR13","doi-asserted-by":"crossref","first-page":"1283","DOI":"10.1016\/S0021-9258(18)49327-1","volume":"233","author":"M Schramm","year":"1958","unstructured":"Schramm, M., Klybas, V. & Racker, E. Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J. Biol. Chem. 233, 1283\u20131288 (1958)","journal-title":"J. Biol. Chem."},{"key":"BFnature19769_CR14","doi-asserted-by":"publisher","first-page":"1074","DOI":"10.1038\/nbt.2055","volume":"29","author":"D Dugar","year":"2011","unstructured":"Dugar, D. & Stephanopoulos, G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nature Biotechnol. 29, 1074\u20131078 (2011)","journal-title":"Nature Biotechnol."},{"key":"BFnature19769_CR15","doi-asserted-by":"publisher","first-page":"693","DOI":"10.1038\/nature12575","volume":"502","author":"IW Bogorad","year":"2013","unstructured":"Bogorad, I. W., Lin, T. S. & Liao, J. C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502, 693\u2013697 (2013)","journal-title":"Nature"},{"key":"BFnature19769_CR16","doi-asserted-by":"publisher","first-page":"1349","DOI":"10.1038\/1791349a0","volume":"179","author":"M Schramm","year":"1957","unstructured":"Schramm, M. & Racker, E. Formation of erythrose-4-phosphate and acetyl phosphate by a phosphorolytic cleavage of fructose-6-phosphate. Nature 179, 1349\u20131350 (1957)","journal-title":"Nature"},{"key":"BFnature19769_CR17","doi-asserted-by":"publisher","first-page":"2892","DOI":"10.1128\/AEM.70.5.2892-2897.2004","volume":"70","author":"M Sonderegger","year":"2004","unstructured":"Sonderegger, M., Sch\u00fcmperli, M. & Sauer, U. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 70, 2892\u20132897 (2004)","journal-title":"Appl. Environ. Microbiol."},{"key":"BFnature19769_CR18","doi-asserted-by":"publisher","first-page":"2216","DOI":"10.1002\/bit.24888","volume":"110","author":"K Kocharin","year":"2013","unstructured":"Kocharin, K., Siewers, V. & Nielsen, J. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Biotechnol. Bioeng. 110, 2216\u20132224 (2013)","journal-title":"Biotechnol. Bioeng."},{"key":"BFnature19769_CR19","doi-asserted-by":"publisher","first-page":"28953","DOI":"10.1074\/jbc.271.46.28953","volume":"271","author":"MA van den Berg","year":"1996","unstructured":"van den Berg, M. A. et al. The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J. Biol. Chem. 271, 28953\u201328959 (1996)","journal-title":"J. Biol. Chem."},{"key":"BFnature19769_CR20","doi-asserted-by":"publisher","first-page":"1357","DOI":"10.1128\/jb.177.5.1357-1366.1995","volume":"177","author":"I Stojiljkovic","year":"1995","unstructured":"Stojiljkovic, I., B\u00e4umler, A. J. & Heffron, F. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster. J. Bacteriol. 177, 1357\u20131366 (1995)","journal-title":"J. Bacteriol."},{"key":"BFnature19769_CR21","doi-asserted-by":"publisher","unstructured":"Kozak, B. U. et al. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. FEMS Yeast Res. 16, http:\/\/dx.doi.org\/10.1093\/femsyr\/fow006 (2016)","DOI":"10.1093\/femsyr\/fow006"},{"key":"BFnature19769_CR22","doi-asserted-by":"publisher","first-page":"46","DOI":"10.1016\/j.ymben.2013.11.005","volume":"21","author":"BU Kozak","year":"2014","unstructured":"Kozak, B. U. et al. Replacement of the Saccharomyces cerevisiae acetyl-CoA synthetases by alternative pathways for cytosolic acetyl-CoA synthesis. Metab. Eng. 21, 46\u201359 (2014)","journal-title":"Metab. Eng."},{"key":"BFnature19769_CR23","doi-asserted-by":"publisher","first-page":"1927","DOI":"10.1128\/JB.186.7.1927-1932.2004","volume":"186","author":"M Hedl","year":"2004","unstructured":"Hedl, M., Tabernero, L., Stauffacher, C. V. & Rodwell, V. W. Class II 3-hydroxy-3-methylglutaryl coenzyme A reductases. J. Bacteriol. 186, 1927\u20131932 (2004)","journal-title":"J. Bacteriol."},{"key":"BFnature19769_CR24","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1016\/j.ymben.2014.06.006","volume":"25","author":"Y Lee","year":"2014","unstructured":"Lee, Y., Lafontaine Rivera, J. G. & Liao, J. C. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab. Eng. 25, 63\u201371 (2014)","journal-title":"Metab. Eng."},{"key":"BFnature19769_CR25","doi-asserted-by":"publisher","first-page":"3555","DOI":"10.1074\/jbc.M007164200","volume":"276","author":"AK Pahlman","year":"2001","unstructured":"Pahlman, A. K., Granath, K., Ansell, R., Hohmann, S. & Adler, L. The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J. Biol. Chem. 276, 3555\u20133563 (2001)","journal-title":"J. Biol. Chem."},{"key":"BFnature19769_CR26","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1186\/1475-2859-13-39","volume":"13","author":"BW de Jong","year":"2014","unstructured":"de Jong, B. W., Shi, S., Siewers, V. & Nielsen, J. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. Microb. Cell Fact. 13, 39 (2014)","journal-title":"Microb. Cell Fact."},{"key":"BFnature19769_CR27","unstructured":"Walker, G. M. Yeast Physiology and Biotechnology (John Wiley & Sons, 1998)"},{"key":"BFnature19769_CR28","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1101\/sqb.2011.76.010769","volume":"76","author":"L Cai","year":"2011","unstructured":"Cai, L. & Tu, B. P. On acetyl-CoA as a gauge of cellular metabolic state. Cold Spring Harb. Symp. Quant. Biol. 76, 195\u2013202 (2011)","journal-title":"Cold Spring Harb. Symp. Quant. Biol."},{"key":"BFnature19769_CR29","doi-asserted-by":"publisher","first-page":"310","DOI":"10.1016\/j.molcel.2012.10.025","volume":"49","author":"MA McBrian","year":"2013","unstructured":"McBrian, M. A. et al. Histone acetylation regulates intracellular pH. Mol. Cell 49, 310\u2013321 (2013)","journal-title":"Mol. Cell"},{"key":"BFnature19769_CR30","doi-asserted-by":"publisher","first-page":"169","DOI":"10.1038\/nbt0208-169","volume":"26","author":"LR Lynd","year":"2008","unstructured":"Lynd, L. R. et al. How biotech can transform biofuels. Nature Biotechol. 26, 169\u2013172 (2008)","journal-title":"Nature Biotechol."},{"key":"BFnature19769_CR31","doi-asserted-by":"publisher","first-page":"1421","DOI":"10.1101\/gr.3992505","volume":"15","author":"L Kuepfer","year":"2005","unstructured":"Kuepfer, L., Sauer, U. & Blank, L. M. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res. 15, 1421\u20131430 (2005)","journal-title":"Genome Res."},{"key":"BFnature19769_CR32","unstructured":"Edwards, J. S., Ramakrishna, R., Schilling, C. H. & Palsson, B. O. in Metabolic Engineering (eds Lee, S. Y. & Papoutsakis, E. T. ) 13\u201357 (Marcel Dekker, 1999)"},{"key":"BFnature19769_CR33","doi-asserted-by":"crossref","unstructured":"Stephanopoulos, G., Aristidou, A. A. & Nielsen, J. Metabolic Engineering: Principles and Methodologies (Academic Press, 1998)","DOI":"10.1016\/B978-012666260-3\/50002-9"},{"key":"BFnature19769_CR34","unstructured":"Verduyn, C. Energetic Aspects of Metabolic Fluxes in Yeasts PhD thesis, Delft Univ. (1992)"},{"key":"BFnature19769_CR35","doi-asserted-by":"publisher","first-page":"244","DOI":"10.1101\/gr.234503","volume":"13","author":"J F\u00f6rster","year":"2003","unstructured":"F\u00f6rster, J., Famili, I., Fu, P., Palsson, B. O. & Nielsen, J. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res. 13, 244\u2013253 (2003)","journal-title":"Genome Res."},{"key":"BFnature19769_CR36","doi-asserted-by":"publisher","first-page":"25","DOI":"10.1007\/BF00696220","volume":"99","author":"PJ Rogers","year":"1974","unstructured":"Rogers, P. J. & Stewart, P. R. Energetic efficiency and maintenance. Energy characteristics of Saccharomyces cerevisiae (wild type and petite) and Candida parapsilosis grown aerobically and micro-aerobically in continuous culture. Arch. Microbiol. 99, 25\u201346 (1974)","journal-title":"Arch. Microbiol."},{"key":"BFnature19769_CR37","doi-asserted-by":"publisher","first-page":"91","DOI":"10.1099\/00221287-64-1-91","volume":"64","author":"TG Watson","year":"1970","unstructured":"Watson, T. G. Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. J. Gen. Microbiol. 64, 91\u201399 (1970)","journal-title":"J. Gen. Microbiol."},{"key":"BFnature19769_CR38","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1186\/1752-0509-3-37","volume":"3","author":"ML Mo","year":"2009","unstructured":"Mo, M. L., Palsson, B. O. & Herrgard, M. J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3, 37, (2009)","journal-title":"BMC Syst. Biol."},{"key":"BFnature19769_CR39","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1111\/j.1432-1033.1973.tb02961.x","volume":"37","author":"R Lagunas","year":"1973","unstructured":"Lagunas, R. & Gancedo, J. M. Reduced pyridine-nucleotides balance in glucose-growing Saccharomyces cerevisiae. Eur. J. Biochem. 37, 90\u201394 (1973)","journal-title":"Eur. J. Biochem."},{"key":"BFnature19769_CR40","doi-asserted-by":"publisher","first-page":"390","DOI":"10.1038\/msb.2010.47","volume":"6","author":"NE Lewis","year":"2010","unstructured":"Lewis, N. E. et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol. 6, 390 (2010)","journal-title":"Mol. Syst. Biol."},{"key":"BFnature19769_CR41","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1016\/j.ymben.2014.07.006","volume":"25","author":"CM Sandoval","year":"2014","unstructured":"Sandoval, C. M. et al. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae. Metabol. Eng. 25, 215\u2013226 (2014)","journal-title":"Metabol. Eng."},{"key":"BFnature19769_CR42","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1021\/sb4001992","volume":"3","author":"S de Kok","year":"2014","unstructured":"de Kok, S. et al. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth. Biol. 3, 97\u2013106 (2014)","journal-title":"ACS Synth. Biol."},{"key":"BFnature19769_CR43","doi-asserted-by":"publisher","first-page":"E111","DOI":"10.1073\/pnas.1110740109","volume":"109","author":"PJ Westfall","year":"2012","unstructured":"Westfall, P. J. et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proc. Natl Acad. Sci. USA 109, E111\u2013E118 (2012)","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"BFnature19769_CR44","unstructured":"Serber, Z., Lowe, R., Ubersax, J. A. & Chandran, S. S. Compositions and methods for the assembly of polynucleotides. US patent 8,110,360 B2 (2012)"},{"key":"BFnature19769_CR45","unstructured":"Guthrie, C. & Fink, G. R. in Methods in Enzymology Vol. 194 (Academic Press, 1991)"},{"key":"BFnature19769_CR46","doi-asserted-by":"publisher","first-page":"706","DOI":"10.1016\/S0141-0229(00)00162-9","volume":"26","author":"JP van Dijken","year":"2000","unstructured":"van Dijken, J. P. et al. An interlaboratory comparison of physiological and genetic properties of four Saccharomyces cerevisiae strains. Enzyme Microb. Technol. 26, 706\u2013714 (2000)","journal-title":"Enzyme Microb. Technol."},{"key":"BFnature19769_CR47","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1186\/1475-2859-11-36","volume":"11","author":"JF Nijkamp","year":"2012","unstructured":"Nijkamp, J. F. et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb. Cell Fact. 11, 36 (2012)","journal-title":"Microb. Cell Fact."},{"key":"BFnature19769_CR48","unstructured":"Rose, M. D., Winston, F. & Hieter, P. Methods in Yeast Genetics, a Laboratory Course Manual (Cold Spring Harbor Laboratory, 1990)"},{"key":"BFnature19769_CR49","doi-asserted-by":"publisher","first-page":"350","DOI":"10.1111\/j.1749-6632.1990.tb24257.x","volume":"589","author":"RA Brierley","year":"1990","unstructured":"Brierley, R. A., Bussineau, C., Kosson, R., Melton, A. & Siegel, R. S. Fermentation development of recombinant Pichia pastoris expressing the heterologous gene: bovine lysozyme. Ann. NY Acad. Sci. 589, 350\u2013362 (1990)","journal-title":"Ann. NY Acad. Sci."},{"key":"BFnature19769_CR50","doi-asserted-by":"publisher","first-page":"248","DOI":"10.1016\/0003-2697(76)90527-3","volume":"72","author":"MM Bradford","year":"1976","unstructured":"Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem 72, 248\u2013254 (1976)","journal-title":"Anal. Biochem"},{"key":"BFnature19769_CR51","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/S0021-9258(17)41558-4","volume":"161","author":"F Lipmann","year":"1945","unstructured":"Lipmann, F. & Tuttle, L. C. The detection of activated carboxyl groups with hydroxylamine as interceptor. J. Biol. Chem. 161, 415\u2013416 (1945)","journal-title":"J. Biol. Chem."},{"key":"BFnature19769_CR52","doi-asserted-by":"publisher","first-page":"107","DOI":"10.1016\/0141-0229(94)00043-Q","volume":"17","author":"DE Salt","year":"1995","unstructured":"Salt, D. E., Hay, S., Thomas, O. R. T., Hoare, M. & Dunnill, P. Selective flocculation of cellular contaminants from soluble proteins using polyethyleneimine: a study of several organisms and polymer molecular weights. Enzyme Microb. Technol. 17, 107\u2013113 (1995)","journal-title":"Enzyme Microb. Technol."},{"key":"BFnature19769_CR53","doi-asserted-by":"publisher","first-page":"116","DOI":"10.1016\/j.ymben.2013.06.004","volume":"19","author":"SE Mainguet","year":"2013","unstructured":"Mainguet, S. E., Gronenberg, L. S., Wong, S. S. & Liao, J. C. A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metabol. Eng. 19, 116\u2013127 (2013)","journal-title":"Metabol. Eng."},{"key":"BFnature19769_CR54","doi-asserted-by":"publisher","first-page":"33","DOI":"10.1002\/yea.320090105","volume":"9","author":"B Elliott","year":"1993","unstructured":"Elliott, B. & Futcher, B. Stress resistance of yeast cells is largely independent of cell cycle phase. Yeast 9, 33\u201342 (1993)","journal-title":"Yeast"},{"key":"BFnature19769_CR55","doi-asserted-by":"publisher","first-page":"829","DOI":"10.1002\/(SICI)1097-0061(199907)15:10A<829::AID-YEA423>3.0.CO;2-9","volume":"15","author":"JP Navarro-Avino","year":"1999","unstructured":"Navarro-Avino, J. P., Prasad, R., Miralles, V. J., Benito, R. M. & Serrano, R. A proposal for nomenclature of aldehyde dehydrogenases in Saccharomyces cerevisiae and characterization of the stress-inducible ALD2 and ALD3 genes. Yeast 15, 829\u2013842 (1999)","journal-title":"Yeast"},{"key":"BFnature19769_CR56","doi-asserted-by":"publisher","first-page":"3265","DOI":"10.1074\/jbc.M209759200","volume":"278","author":"VM Boer","year":"2003","unstructured":"Boer, V. M., de Winde, J. H., Pronk, J. T. & Piper, M. D. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur. J. Biol. Chem. 278, 3265\u20133274 (2003)","journal-title":"J. Biol. Chem."}],"container-title":["Nature"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.nature.com\/articles\/nature19769.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/www.nature.com\/articles\/nature19769","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/www.nature.com\/articles\/nature19769.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,5,18]],"date-time":"2023-05-18T17:55:40Z","timestamp":1684432540000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/nature19769"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,9]]},"references-count":56,"journal-issue":{"issue":"7622","published-print":{"date-parts":[[2016,9]]}},"alternative-id":["BFnature19769"],"URL":"https:\/\/doi.org\/10.1038\/nature19769","relation":{},"ISSN":["0028-0836","1476-4687"],"issn-type":[{"type":"print","value":"0028-0836"},{"type":"electronic","value":"1476-4687"}],"subject":[],"published":{"date-parts":[[2016,9]]},"assertion":[{"value":"28 October 2015","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"16 August 2016","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"21 September 2016","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Some authors are stockholders of Amyris.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}