{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T08:10:35Z","timestamp":1721635835715},"reference-count":85,"publisher":"American Chemical Society (ACS)","issue":"14","license":[{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T00:00:00Z","timestamp":1719792000000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-045"}],"funder":[{"DOI":"10.13039\/501100001665","name":"Agence Nationale de la Recherche","doi-asserted-by":"publisher","award":["ANR-20-THIA-0004"],"id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["J. Chem. Inf. Model."],"published-print":{"date-parts":[[2024,7,22]]},"DOI":"10.1021\/acs.jcim.4c00318","type":"journal-article","created":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T10:22:58Z","timestamp":1719829378000},"page":"5451-5469","source":"Crossref","is-referenced-by-count":0,"title":["Stereoisomers Are Not Machine Learning\u2019s Best Friends"],"prefix":"10.1021","volume":"64","author":[{"given":"G\u00f6khan","family":"Tah\u0131l","sequence":"first","affiliation":[{"name":"Centre de Recherche en Informatique de Lens (CRIL)Univ. Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France"},{"name":"Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unit\u00e9 de Catalyse et Chimie du Solide (UCCS), rue Jean Souvraz, SP 18, F-62307 Lens Cedex, France"}]},{"given":"Fabien","family":"Delorme","sequence":"additional","affiliation":[{"name":"Centre de Recherche en Informatique de Lens (CRIL)Univ. Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France"}]},{"given":"Daniel","family":"Le Berre","sequence":"additional","affiliation":[{"name":"Centre de Recherche en Informatique de Lens (CRIL)Univ. Artois, CNRS, Centre de Recherche en Informatique de Lens (CRIL), F-62300 Lens, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5865-0979","authenticated-orcid":true,"given":"\u00c9ric","family":"Monflier","sequence":"additional","affiliation":[{"name":"Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unit\u00e9 de Catalyse et Chimie du Solide (UCCS), rue Jean Souvraz, SP 18, F-62307 Lens Cedex, France"}]},{"given":"Adlane","family":"Sayede","sequence":"additional","affiliation":[{"name":"Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unit\u00e9 de Catalyse et Chimie du Solide (UCCS), rue Jean Souvraz, SP 18, F-62307 Lens Cedex, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3494-4734","authenticated-orcid":true,"given":"S\u00e9bastien","family":"Tilloy","sequence":"additional","affiliation":[{"name":"Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Unit\u00e9 de Catalyse et Chimie du Solide (UCCS), rue Jean Souvraz, SP 18, F-62307 Lens Cedex, France"}]}],"member":"316","published-online":{"date-parts":[[2024,7,1]]},"reference":[{"key":"ref1\/cit1","doi-asserted-by":"publisher","DOI":"10.1126\/science.aaa8415"},{"key":"ref2\/cit2","doi-asserted-by":"publisher","DOI":"10.1038\/nrg3920"},{"key":"ref3\/cit3","doi-asserted-by":"publisher","DOI":"10.1016\/j.drudis.2018.01.039"},{"key":"ref4\/cit4","unstructured":"Rolnick, D.; Donti, P. L.; Kaack, L. H.; Kochanski, K.; Lacoste, A.; Sankaran, K.; Ross, A. S.; Milojevic-Dupont, N.; Jaques, N.; Waldman-Brown, A.; Luccioni, A.; Maharaj, T.; Sherwin, E. D.; Mukkavilli, S. K.; Kording, K. P.; Gomes, C.; Ng, A. Y.; Hassabis, D.; Platt, J. C.; Creutzig, F.; Chayes, J.; Bengio, Y. Tackling Climate Change with Machine Learning. 2019, arXiv:1906.05433. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1906.05433."},{"key":"ref5\/cit5","unstructured":"Baron, D. Machine Learning in Astronomy: A Practical Overview. 2019, arXiv:1904.07248. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1904.07248."},{"key":"ref6\/cit6","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.3c00582"},{"key":"ref7\/cit7","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.9b00136"},{"key":"ref8\/cit8","doi-asserted-by":"publisher","DOI":"10.1039\/C9ME00039A"},{"key":"ref9\/cit9","doi-asserted-by":"publisher","DOI":"10.1038\/s41586-018-0337-2"},{"key":"ref10\/cit10","doi-asserted-by":"publisher","DOI":"10.1038\/nature25978"},{"key":"ref11\/cit11","doi-asserted-by":"publisher","DOI":"10.1016\/j.aichem.2023.100035"},{"key":"ref12\/cit12","doi-asserted-by":"publisher","DOI":"10.1016\/j.aichem.2023.100006"},{"key":"ref13\/cit13","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.3c01807"},{"key":"ref14\/cit14","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.3c00307"},{"key":"ref15\/cit15","doi-asserted-by":"publisher","DOI":"10.1016\/j.eng.2023.04.013"},{"key":"ref16\/cit16","doi-asserted-by":"publisher","DOI":"10.1016\/j.drudis.2017.08.010"},{"key":"ref17\/cit17","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.1c00619"},{"key":"ref18\/cit18","doi-asserted-by":"publisher","DOI":"10.2174\/15680266113139990034"},{"key":"ref19\/cit19","doi-asserted-by":"publisher","unstructured":"Landrum, G.; Tosco, P.; Kelley, B.; Ric; Cosgrove, D.; Sriniker; Gedeck; Vianello, R.; NadineSchneider; Kawashima, E.; Dan, N.; Jones, G.; Dalke, A.; Cole, B.; Swain, M.; Turk, S.; AlexanderSavelyev; Vaucher, A.; W\u00f3jcikowski, M.; Take, I.; Probst, D.; Ujihara, K.; Scalfani, V. F.; Godin, G.; Pahl, A.; Berenger, F.; Jasondbiggs; Strets123 Rdkit\/Rdkit: 2023_03_1 (Q1 2023) Release, 2023 10.5281\/ZENODO.7880616.","DOI":"10.5281\/ZENODO.7880616"},{"key":"ref20\/cit20","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymeth.2014.08.005"},{"key":"ref21\/cit21","doi-asserted-by":"publisher","DOI":"10.1021\/ci100050t"},{"key":"ref22\/cit22","doi-asserted-by":"publisher","DOI":"10.1517\/17460441.2016.1117070"},{"key":"ref23\/cit23","doi-asserted-by":"publisher","DOI":"10.1186\/s13321-018-0321-8"},{"key":"ref24\/cit24","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.7b00616"},{"key":"ref25\/cit25","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.8b00324"},{"key":"ref26\/cit26","volume-title":"Ullmann\u2019s Encyclopedia of Industrial Chemistry","author":"Fahlbusch K.","year":"2003"},{"key":"ref27\/cit27","doi-asserted-by":"publisher","DOI":"10.1002\/bdrc.21096"},{"key":"ref28\/cit28","doi-asserted-by":"publisher","DOI":"10.1186\/s13321-018-0258-y"},{"key":"ref29\/cit29","unstructured":"PubChemPy Documentation\u2500PubChemPy\n1.0.4 Documentation. https:\/\/pubchempy.readthedocs.io\/en\/latest\/."},{"key":"ref30\/cit30","doi-asserted-by":"publisher","DOI":"10.1093\/nar\/gkac956"},{"key":"ref31\/cit31","doi-asserted-by":"publisher","DOI":"10.1186\/s13321-015-0068-4"},{"key":"ref32\/cit32","doi-asserted-by":"publisher","DOI":"10.1021\/acs.est.3c02198"},{"key":"ref33\/cit33","doi-asserted-by":"publisher","DOI":"10.1186\/s13321-016-0173-z"},{"key":"ref34\/cit34","unstructured":"Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.; G\u00f3mez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; Adams, R. P. Convolutional Networks on Graphs for Learning Molecular Fingerprints, 2015, arXiv:1509.09292. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1509.09292 (accessed June 15, 2023)."},{"key":"ref35\/cit35","doi-asserted-by":"publisher","DOI":"10.1021\/ci9800211"},{"key":"ref36\/cit36","doi-asserted-by":"publisher","DOI":"10.1021\/ci010132r"},{"key":"ref37\/cit37","doi-asserted-by":"publisher","DOI":"10.1021\/c160017a018"},{"key":"ref38\/cit38","unstructured":"Broder, A. Z. In On the Resemblance and Containment of Documents, Proceedings of the Compression and Complexity of SEQUENCES 1997 (Cat. No.97TB100171); IEEE Computer Society: Salerno, Italy, 1998; pp 21\u201329."},{"key":"ref39\/cit39","volume-title":"Foundations of Statistical Natural Language Processing","author":"Manning C. D.","year":"1999"},{"key":"ref40\/cit40","doi-asserted-by":"publisher","DOI":"10.1109\/MCI.2014.2307227"},{"key":"ref41\/cit41","unstructured":"Goldberg, Y. A Primer on Neural Network Models for Natural Language Processing. 2015, arXiv:1510.00726. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1510.00726."},{"key":"ref42\/cit42","first-page":"2493","volume":"12","author":"Collobert R.","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"ref43\/cit43","unstructured":"Young, T.; Hazarika, D.; Poria, S.; Cambria, E. Recent Trends in Deep Learning Based Natural Language Processing. 2017, arXiv:1708.02709. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1708.02709."},{"key":"ref44\/cit44","unstructured":"Maas, A. L.; Daly, R. E.; Pham, P. T.; Huang, D.; Ng, A. Y.; Potts, C. In Learning Word Vectors for Sentiment Analysis, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, 2011."},{"key":"ref45\/cit45","doi-asserted-by":"crossref","unstructured":"Lample, G.; Ballesteros, M.; Subramanian, S.; Kawakami, K.; Dyer, C. Neural Architectures for Named Entity Recognition. 2016, arXiv:1603.01360. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1603.01360.","DOI":"10.18653\/v1\/N16-1030"},{"key":"ref46\/cit46","first-page":"79","volume":"16","author":"Brown P. F.","year":"1990","journal-title":"Comput. Linguist."},{"key":"ref47\/cit47","doi-asserted-by":"publisher","DOI":"10.1111\/j.1540-6261.2010.01625.x"},{"key":"ref48\/cit48","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0174698"},{"key":"ref49\/cit49","unstructured":"Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient Estimation of Word Representations in Vector Space. 2013, arXiv:1301.3781. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1301.3781."},{"key":"ref50\/cit50","doi-asserted-by":"publisher","DOI":"10.1162\/tacl_a_00051"},{"key":"ref51\/cit51","doi-asserted-by":"crossref","unstructured":"Pennington, J.; Socher, R.; Manning, C. In Glove: Global Vectors for Word Representation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP); Association for Computational Linguistics: Doha, Qatar, 2014; pp 1532\u20131543.","DOI":"10.3115\/v1\/D14-1162"},{"key":"ref52\/cit52","unstructured":"Le, Q. V.; Mikolov, T. Distributed Representations of Sentences and Documents. 2014, arXiv:1405.4053. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1405.4053."},{"key":"ref53\/cit53","doi-asserted-by":"crossref","unstructured":"Joulin, A.; Grave, E.; Bojanowski, P.; Mikolov, T. Bag of Tricks for Efficient Text Classification. 2016. arXiv:1607.01759. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1607.01759 (accessed June 15, 2023).","DOI":"10.18653\/v1\/E17-2068"},{"key":"ref54\/cit54","doi-asserted-by":"publisher","DOI":"10.1021\/ci00057a005"},{"key":"ref55\/cit55","doi-asserted-by":"publisher","DOI":"10.1021\/ci00062a008"},{"key":"ref56\/cit56","doi-asserted-by":"publisher","DOI":"10.1021\/ci00067a005"},{"key":"ref57\/cit57","doi-asserted-by":"publisher","DOI":"10.1186\/1758-2946-3-33"},{"key":"ref58\/cit58","unstructured":"Zheng, J.; Ramasinghe, S.; Lucey, S. Rethinking Positional Encoding. 2021, arXiv:2107.02561. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/2107.02561 (accessed May 17, 2024)."},{"key":"ref59\/cit59","unstructured":"Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, \u0141.; Polosukhin, I. In Attention Is All You Need, Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017."},{"key":"ref60\/cit60","doi-asserted-by":"publisher","DOI":"10.1038\/s42004-023-01045-7"},{"key":"ref61\/cit61","series-title":"Duxbury Advanced Series","volume-title":"Mathematical Statistics and Data Analysis","author":"Rice J. A.","year":"2007","edition":"3"},{"key":"ref62\/cit62","unstructured":"\u0158eh\u016f\u0159ek, R.; Sojka, P. In Software Framework for Topic Modelling with Large Corpora, Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks; ELRA: Valletta, Malta, 2010; pp 45\u201350."},{"key":"ref63\/cit63","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.0c00675"},{"key":"ref64\/cit64","doi-asserted-by":"publisher","DOI":"10.1016\/j.cdc.2023.101022"},{"key":"ref65\/cit65","doi-asserted-by":"publisher","DOI":"10.1145\/103162.103163"},{"key":"ref66\/cit66","volume-title":"Dynamic Programming","author":"Bellman R.","year":"1984"},{"key":"ref67\/cit67","unstructured":"Gao, Y.; Klawonn, F.; Lee, M.; Li, B.; Tang, K.; Weise, T.; Yao, X.; Yin, H., Eds. Intelligent Data Engineering and Automated Learning\u2500IDEAL 2013, Proceedings of the 14th International Conference, IDEAL 2013, Hefei, China, October 20\u201323, 2013; Springer: Berlin, Heidelberg, 2013."},{"key":"ref68\/cit68","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.70.056135"},{"key":"ref69\/cit69","doi-asserted-by":"publisher","DOI":"10.1021\/cr970022c"},{"key":"ref70\/cit70","doi-asserted-by":"publisher","DOI":"10.1021\/cr970019t"},{"key":"ref71\/cit71","doi-asserted-by":"publisher","DOI":"10.1007\/s11696-022-02381-z"},{"key":"ref72\/cit72","doi-asserted-by":"publisher","DOI":"10.1023\/A:1011592327676"},{"key":"ref73\/cit73","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.8b00805"},{"key":"ref74\/cit74","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijpharm.2011.03.065"},{"key":"ref75\/cit75","doi-asserted-by":"publisher","DOI":"10.1016\/j.apsb.2019.04.004"},{"key":"ref76\/cit76","doi-asserted-by":"publisher","DOI":"10.3390\/biom10060913"},{"key":"ref77\/cit77","doi-asserted-by":"publisher","DOI":"10.1007\/s10847-021-01092-4"},{"key":"ref78\/cit78","doi-asserted-by":"publisher","DOI":"10.1021\/cr970015o"},{"key":"ref79\/cit79","doi-asserted-by":"publisher","DOI":"10.1023\/A:1010933404324"},{"key":"ref80\/cit80","doi-asserted-by":"crossref","unstructured":"Chen, T.; Guestrin, C. In XGBoost: A Scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016; pp 785\u2013794.","DOI":"10.1145\/2939672.2939785"},{"key":"ref81\/cit81","volume-title":"Advances in Neural Information Processing Systems","volume":"30","author":"Ke G.","year":"2017"},{"key":"ref82\/cit82","doi-asserted-by":"crossref","unstructured":"Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. 2019, arXiv:1907.10902. arXiv.org e-Print archive. https:\/\/arxiv.org\/abs\/1907.10902.","DOI":"10.1145\/3292500.3330701"},{"key":"ref83\/cit83","unstructured":"Kohavi, R. In A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection, IJCAI\u201995: Proceedings of the 14th International Joint Conference on Artificial Intelligence, 1995; pp 1137\u20131145."},{"key":"ref84\/cit84","doi-asserted-by":"publisher","DOI":"10.2307\/2683704"},{"key":"ref85\/cit85","doi-asserted-by":"publisher","DOI":"10.3354\/cr030079"}],"container-title":["Journal of Chemical Information and Modeling"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/pubs.acs.org\/doi\/pdf\/10.1021\/acs.jcim.4c00318","content-type":"application\/pdf","content-version":"vor","intended-application":"unspecified"},{"URL":"https:\/\/pubs.acs.org\/doi\/pdf\/10.1021\/acs.jcim.4c00318","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T07:44:29Z","timestamp":1721634269000},"score":1,"resource":{"primary":{"URL":"https:\/\/pubs.acs.org\/doi\/10.1021\/acs.jcim.4c00318"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7,1]]},"references-count":85,"journal-issue":{"issue":"14","published-print":{"date-parts":[[2024,7,22]]}},"alternative-id":["10.1021\/acs.jcim.4c00318"],"URL":"https:\/\/doi.org\/10.1021\/acs.jcim.4c00318","relation":{},"ISSN":["1549-9596","1549-960X"],"issn-type":[{"value":"1549-9596","type":"print"},{"value":"1549-960X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,7,1]]}}}