{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T12:51:28Z","timestamp":1740142288950,"version":"3.37.3"},"reference-count":60,"publisher":"American Chemical Society (ACS)","issue":"12","license":[{"start":{"date-parts":[[2021,12,6]],"date-time":"2021-12-06T00:00:00Z","timestamp":1638748800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,12,6]],"date-time":"2021-12-06T00:00:00Z","timestamp":1638748800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,12,6]],"date-time":"2021-12-06T00:00:00Z","timestamp":1638748800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-045"}],"funder":[{"DOI":"10.13039\/501100001843","name":"Science and Engineering Research Board","doi-asserted-by":"publisher","award":["CVD\/2020\/000343"],"id":[{"id":"10.13039\/501100001843","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100002418","name":"Intel Corporation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100002418","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001409","name":"Department of Science and Technology, Ministry of Science and Technology","doi-asserted-by":"publisher","award":["SR\/WOS-A\/CS-19\/2018 (G)"],"id":[{"id":"10.13039\/501100001409","id-type":"DOI","asserted-by":"publisher"}]},{"name":"IHub-Data, IIIT- Hyderabad"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["J. Chem. Inf. Model."],"published-print":{"date-parts":[[2021,12,27]]},"DOI":"10.1021\/acs.jcim.1c01341","type":"journal-article","created":{"date-parts":[[2021,12,6]],"date-time":"2021-12-06T11:30:02Z","timestamp":1638790202000},"page":"5815-5826","source":"Crossref","is-referenced-by-count":33,"title":["MoleGuLAR: Molecule Generation Using Reinforcement Learning with Alternating Rewards"],"prefix":"10.1021","volume":"61","author":[{"given":"Manan","family":"Goel","sequence":"first","affiliation":[{"name":"Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India"}]},{"given":"Shampa","family":"Raghunathan","sequence":"additional","affiliation":[{"name":"Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India"},{"name":"\u00c9cole Centrale School of Engineering, Mahindra University, Hyderabad 500 043, India"}]},{"given":"Siddhartha","family":"Laghuvarapu","sequence":"additional","affiliation":[{"name":"Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7114-3955","authenticated-orcid":true,"given":"U. Deva","family":"Priyakumar","sequence":"additional","affiliation":[{"name":"Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India"}]}],"member":"316","published-online":{"date-parts":[[2021,12,6]]},"reference":[{"key":"ref1\/cit1","doi-asserted-by":"publisher","DOI":"10.1038\/s41586-018-0337-2"},{"key":"ref2\/cit2","doi-asserted-by":"crossref","unstructured":"Sadowski, P.; Baldi, P. Braverman Readings in Machine Learning. Key Ideas from Inception to Current State; Springer: New York, 2018; pp 269\u2013297.","DOI":"10.1007\/978-3-319-99492-5_12"},{"key":"ref3\/cit3","doi-asserted-by":"publisher","DOI":"10.1039\/C7SC02664A"},{"key":"ref4\/cit4","doi-asserted-by":"publisher","DOI":"10.1021\/ci049714+"},{"key":"ref5\/cit5","doi-asserted-by":"publisher","DOI":"10.1093\/nar\/gky1075"},{"key":"ref6\/cit6","doi-asserted-by":"publisher","DOI":"10.1038\/s41586-019-1923-7"},{"key":"ref7\/cit7","doi-asserted-by":"publisher","DOI":"10.1002\/chem.201605499"},{"key":"ref8\/cit8","doi-asserted-by":"publisher","DOI":"10.1021\/acscentsci.9b00055"},{"key":"ref9\/cit9","unstructured":"Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural message passing for quantum chemistry; International Conference on Machine Learning, 2017; pp 12631272"},{"key":"ref10\/cit10","doi-asserted-by":"publisher","DOI":"10.3390\/ijms13010427"},{"key":"ref11\/cit11","doi-asserted-by":"publisher","DOI":"10.1038\/384014a0"},{"key":"ref12\/cit12","doi-asserted-by":"publisher","DOI":"10.3389\/fchem.2020.00343"},{"key":"ref13\/cit13","doi-asserted-by":"publisher","DOI":"10.1124\/pr.112.007336"},{"key":"ref14\/cit14","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.1c00799"},{"journal-title":"BiRDS-Binding Residue Detection from Protein Sequences using Deep ResNets","year":"2021","author":"Chelur V.","key":"ref15\/cit15"},{"key":"ref16\/cit16","doi-asserted-by":"publisher","DOI":"10.1039\/D1SC02783B"},{"key":"ref17\/cit17","doi-asserted-by":"publisher","DOI":"10.1038\/s41586-019-0917-9"},{"key":"ref18\/cit18","doi-asserted-by":"publisher","DOI":"10.1021\/ar500432k"},{"key":"ref19\/cit19","doi-asserted-by":"publisher","DOI":"10.1002\/minf.201700111"},{"key":"ref20\/cit20","doi-asserted-by":"publisher","DOI":"10.1021\/ci00057a005"},{"journal-title":"MolGAN: An implicit generative model for small molecular graphs","year":"2018","author":"De Cao N.","key":"ref21\/cit21"},{"key":"ref22\/cit22","doi-asserted-by":"publisher","DOI":"10.1186\/s13321-019-0397-9"},{"key":"ref23\/cit23","doi-asserted-by":"publisher","DOI":"10.1186\/s13321-019-0404-1"},{"key":"ref24\/cit24","unstructured":"Jin, W.; Barzilay, R.; Jaakkola, T. Junction tree variational autoencoder for molecular graph generation; International Conference on Machine Learning, 2018; pp 2323\u20132332."},{"key":"ref25\/cit25","unstructured":"Kusner, M. J.; Paige, B.; Hern\u00e1ndez-Lobato, J. M. Grammar variational autoencoder; International Conference on Machine Learning, 2017; pp 1945\u20131954."},{"key":"ref26\/cit26","doi-asserted-by":"publisher","DOI":"10.1039\/C9SC04026A"},{"key":"ref27\/cit27","doi-asserted-by":"publisher","DOI":"10.1186\/s13321-018-0286-7"},{"key":"ref28\/cit28","doi-asserted-by":"publisher","DOI":"10.1042\/BCJ20200781"},{"key":"ref29\/cit29","doi-asserted-by":"publisher","DOI":"10.1080\/17460441.2021.1909567"},{"key":"ref30\/cit30","doi-asserted-by":"publisher","DOI":"10.26434\/chemrxiv.14561901.v1"},{"key":"ref31\/cit31","doi-asserted-by":"publisher","DOI":"10.1039\/C8SC04175J"},{"key":"ref32\/cit32","doi-asserted-by":"publisher","DOI":"10.1021\/acscentsci.7b00572"},{"key":"ref33\/cit33","doi-asserted-by":"publisher","DOI":"10.1002\/minf.202000203"},{"key":"ref34\/cit34","unstructured":"Tavakoli, M.; Baldi, P. Continuous Representation of Molecules using Graph Variational Autoencoder. Proceedings of the AAAI 2020 Spring Symposium on Combining Artificial Intelligence and Machine Learning with Physical Sciences, Stanford, CA, March 23\u201325, 2020."},{"key":"ref35\/cit35","doi-asserted-by":"publisher","DOI":"10.1039\/C9SC01928F"},{"key":"ref36\/cit36","unstructured":"Korovina, K.; Xu, S.; Kandasamy, K.; Neiswanger, W.; Poczos, B.; Schneider, J.; Xing, E. Chembo: Bayesian optimization of small organic molecules with synthesizable recommendations; International Conference on Artificial Intelligence and Statistics, 2020; pp 3393\u20133403."},{"key":"ref37\/cit37","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.0c00599"},{"key":"ref38\/cit38","doi-asserted-by":"publisher","DOI":"10.1126\/sciadv.aap7885"},{"journal-title":"Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models","year":"2017","author":"Guimaraes G. L.","key":"ref39\/cit39"},{"key":"ref40\/cit40","unstructured":"You, J.; Liu, B.; Ying, R.; Pande, V.; Leskovec, J. Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation. Proceedings of the 32nd International Conference on Neural Information Processing Systems, Red Hook, NY, 2018; pp 6412\u20136422."},{"key":"ref41\/cit41","doi-asserted-by":"publisher","DOI":"10.1186\/s13321-020-00454-3"},{"key":"ref42\/cit42","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.0c00833"},{"key":"ref43\/cit43","doi-asserted-by":"publisher","DOI":"10.1016\/j.isci.2021.102269"},{"key":"ref44\/cit44","doi-asserted-by":"publisher","DOI":"10.1088\/2632-2153\/abe808"},{"key":"ref45\/cit45","doi-asserted-by":"publisher","DOI":"10.4155\/fmc-2020-0262"},{"key":"ref46\/cit46","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.0c01060"},{"key":"ref47\/cit47","first-page":"190","volume-title":"Proceedings of the 28th International Conference on Neural Information Processing Systems","volume":"1","author":"Joulin A.","year":"2015"},{"key":"ref48\/cit48","unstructured":"Landrum, G. RDKit: A software suite for cheminformatics, computational chemistry, and predictive modeling; 2013."},{"key":"ref49\/cit49","doi-asserted-by":"publisher","DOI":"10.1093\/nar\/28.1.235"},{"key":"ref50\/cit50","doi-asserted-by":"publisher","DOI":"10.1002\/jcc.21256"},{"key":"ref51\/cit51","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jctc.0c01006"},{"key":"ref52\/cit52","unstructured":"HTS Collection. https:\/\/enamine.net\/compound-collections\/screening-collection\/hts-collection (accessed on 11\/23\/2021)."},{"key":"ref53\/cit53","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.7b00616"},{"key":"ref54\/cit54","unstructured":"Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, May 6\u20139, 2019."},{"key":"ref55\/cit55","unstructured":"Hu, W.; Liu, B.; Gomes, J.; Zitnik, M.; Liang, P.; Pande, V. S.; Leskovec, J. Strategies for Pre-training Graph Neural Networks; 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26\u201330, 2020."},{"key":"ref56\/cit56","doi-asserted-by":"publisher","DOI":"10.1021\/acs.jcim.0c01413"},{"key":"ref57\/cit57","doi-asserted-by":"publisher","DOI":"10.1023\/A:1022672621406"},{"key":"ref58\/cit58","doi-asserted-by":"publisher","DOI":"10.1126\/science.abb3405"},{"key":"ref59\/cit59","doi-asserted-by":"publisher","DOI":"10.1111\/j.1471-4159.2006.04059.x"},{"key":"ref60\/cit60","doi-asserted-by":"publisher","DOI":"10.1038\/nchem.1243"}],"container-title":["Journal of Chemical Information and Modeling"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/pubs.acs.org\/doi\/pdf\/10.1021\/acs.jcim.1c01341","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,4,28]],"date-time":"2023-04-28T05:07:09Z","timestamp":1682658429000},"score":1,"resource":{"primary":{"URL":"https:\/\/pubs.acs.org\/doi\/10.1021\/acs.jcim.1c01341"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,6]]},"references-count":60,"journal-issue":{"issue":"12","published-print":{"date-parts":[[2021,12,27]]}},"alternative-id":["10.1021\/acs.jcim.1c01341"],"URL":"https:\/\/doi.org\/10.1021\/acs.jcim.1c01341","relation":{"has-preprint":[{"id-type":"doi","id":"10.26434\/chemrxiv-2021-cg9p8","asserted-by":"object"}]},"ISSN":["1549-9596","1549-960X"],"issn-type":[{"type":"print","value":"1549-9596"},{"type":"electronic","value":"1549-960X"}],"subject":[],"published":{"date-parts":[[2021,12,6]]}}}