{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T13:22:57Z","timestamp":1720272177694},"reference-count":84,"publisher":"Cambridge University Press (CUP)","issue":"5","license":[{"start":{"date-parts":[[2022,2,28]],"date-time":"2022-02-28T00:00:00Z","timestamp":1646006400000},"content-version":"unspecified","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["cambridge.org"],"crossmark-restriction":true},"short-container-title":["Nat. Lang. Eng."],"published-print":{"date-parts":[[2023,9]]},"abstract":"Abstract<\/jats:title>We present novel methods for detecting lexical entailment in a fully rule-based and explainable fashion, by automatic construction of semantic graphs, in any language for which a crowd-sourced dictionary with sufficient coverage and a dependency parser of sufficient accuracy are available. We experiment and evaluate on both the Semeval-2020 lexical entailment task (Glava\u0161 et al<\/jats:italic>. (2020). Proceedings of the Fourteenth Workshop on Semantic Evaluation<\/jats:italic>, pp. 24\u201335) and the SherLIiC<\/jats:monospace> lexical inference dataset of typed predicates (Schmitt and Sch\u00fctze (2019). Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics<\/jats:italic>, pp. 902\u2013914). Combined with top-performing systems, our method achieves improvements over the previous state-of-the-art on both benchmarks. As a standalone system, it offers a fully interpretable model of lexical entailment that makes detailed error analysis possible, uncovering future directions for improving both the semantic parsing method and the inference process on semantic graphs. We release all components of our system as open source software.<\/jats:p>","DOI":"10.1017\/s1351324922000092","type":"journal-article","created":{"date-parts":[[2022,2,28]],"date-time":"2022-02-28T12:21:31Z","timestamp":1646050891000},"page":"1223-1246","update-policy":"http:\/\/dx.doi.org\/10.1017\/policypage","source":"Crossref","is-referenced-by-count":1,"title":["Explainable lexical entailment with semantic graphs"],"prefix":"10.1017","volume":"29","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6132-7144","authenticated-orcid":false,"given":"Adam","family":"Kovacs","sequence":"first","affiliation":[]},{"given":"Kinga","family":"Gemes","sequence":"additional","affiliation":[]},{"given":"Andras","family":"Kornai","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5551-3100","authenticated-orcid":false,"given":"Gabor","family":"Recski","sequence":"additional","affiliation":[]}],"member":"56","published-online":{"date-parts":[[2022,2,28]]},"reference":[{"key":"S1351324922000092_ref24","volume-title":"Webster\u2019s New World Dictionary of the American Language","author":"Guralnik","year":"1958"},{"key":"S1351324922000092_ref51","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1037"},{"key":"S1351324922000092_ref60","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.acl-demos.14"},{"key":"S1351324922000092_ref80","unstructured":"Yu, Z. , Wang, H. , Lin, X. and Wang, M. (2015). Learning term embeddings for hypernymy identification. In Proceedings of the 24th International Conference on Artificial Intelligence, IJCAI\u201915. AAAI Press, pp. 1390\u20131397."},{"key":"S1351324922000092_ref3","unstructured":"Banarescu, L. , Bonial, C. , Cai, S. , Georgescu, M. , Griffitt, K. , Hermjakob, U. , Knight, K. , Koehn, P. , Palmer, M. and Schneider, N. (2013). Abstract meaning representation for sembanking. In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, Sofia, Bulgaria. Association for Computational Linguistics, pp. 178\u2013186."},{"key":"S1351324922000092_ref70","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P16-1226"},{"key":"S1351324922000092_ref68","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1086"},{"key":"S1351324922000092_ref44","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.semeval-1.15"},{"key":"S1351324922000092_ref64","unstructured":"Recski, G. , Kov\u00e1cs, \u00c1. , G\u00e9mes, K. , \u00c1cs, J. and Kornai, A. (2020). BME-TUW at SR\u201920: Lexical grammar induction for surface realization. In Proceedings of the Third Workshop on Multilingual Surface Realisation, Barcelona, Spain (Online). Association for Computational Linguistics, pp. 21\u201329."},{"key":"S1351324922000092_ref19","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-2103"},{"key":"S1351324922000092_ref20","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/E17-3008"},{"key":"S1351324922000092_ref34","unstructured":"Koller, A. (2015). Semantic construction with graph grammars. In Proceedings of the 11th International Conference on Computational Semantics, London, UK. Association for Computational Linguistics, pp. 228\u2013238."},{"key":"S1351324922000092_ref17","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1476"},{"key":"S1351324922000092_ref27","unstructured":"Henrich, V. and Hinrichs, E. (2010). GernEdiT - the GermaNet editing tool. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC\u201910), Valletta, Malta. European Language Resources Association."},{"key":"S1351324922000092_ref36","unstructured":"Koller, A. and Kuhlmann, M. (2011). A generalized view on parsing and translation. In Proceedings of the 12th International Conference on Parsing Technologies (IWPT), Dublin."},{"key":"S1351324922000092_ref62","first-page":"274","article-title":"Building concept definitions from explanatory dictionaries","volume":"31","author":"Recski","year":"2018","journal-title":"International Journal of Lexicography"},{"key":"S1351324922000092_ref2","unstructured":"\u00c1cs, J. , Pajkossy, K. and Kornai, A. (2013). Building basic vocabulary across 40 languages. In Proceedings of the Sixth Workshop on Building and Using Comparable Corpora, Sofia, Bulgaria. Association for Computational Linguistics, pp. 52\u201358."},{"key":"S1351324922000092_ref5","unstructured":"Berant, J. (2012). Global Learning of Textual Entailment Graphs. PhD Thesis, Tel Aviv University."},{"key":"S1351324922000092_ref74","doi-asserted-by":"publisher","DOI":"10.1162\/COLI_a_00301"},{"key":"S1351324922000092_ref6","unstructured":"Berant, J. , Dagan, I. and Goldberger, J. (2011). Global learning of typed entailment rules. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Portland, Oregon, USA. Association for Computational Linguistics, pp. 610\u2013619."},{"key":"S1351324922000092_ref39","first-page":"150","article-title":"The treatment of ordinary quantification in English proper","volume":"54","author":"Kornai","year":"2010","journal-title":"Hungarian Review of Philosophy"},{"key":"S1351324922000092_ref57","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.conll-shared.4"},{"key":"S1351324922000092_ref52","volume-title":"The Concise Oxford Dictionary of Current English","author":"McIntosh","year":"1951"},{"key":"S1351324922000092_ref41","volume-title":"Semantics","author":"Kornai","year":"2019"},{"key":"S1351324922000092_ref76","doi-asserted-by":"publisher","DOI":"10.1109\/TASLP.2020.3013114"},{"key":"S1351324922000092_ref81","unstructured":"Zeichner, N. , Berant, J. and Dagan, I. (2012). Crowdsourcing inference-rule evaluation. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Jeju Island, Korea, pp. 156\u2013160."},{"key":"S1351324922000092_ref84","unstructured":"Zhuang, L. , Wayne, L. , Ya, S. and Jun, Z. (2021). A robustly optimized BERT pre-training approach with post-training. In Proceedings of the 20th Chinese National Conference on Computational Linguistics, Huhhot, China. Chinese Information Processing Society of China, pp. 1218\u20131227."},{"key":"S1351324922000092_ref46","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P16-2041"},{"key":"S1351324922000092_ref25","unstructured":"Hamp, B. and Feldweg, H. (1997). GermaNet - a lexical-semantic net for German. In Automatic Information Extraction and Building of Lexical Semantic Resources for NLP Applications."},{"key":"S1351324922000092_ref42","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/S15-1019"},{"key":"S1351324922000092_ref37","unstructured":"Koller, A. and Kuhlmann, M. (2012). Decomposing TAG algorithms using simple algebraizations. In Proceedings of the 11th International Workshop on Tree Adjoining Grammars and Related Formalisms (TAG+11), Paris, France, pp. 135\u2013143."},{"key":"S1351324922000092_ref1","unstructured":"Abend, O. and Rappoport, A. (2013). Universal conceptual cognitive annotation (UCCA). In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Sofia, Bulgaria. Association for Computational Linguistics, pp. 228\u2013238."},{"key":"S1351324922000092_ref78","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/N18-1101"},{"key":"S1351324922000092_ref58","doi-asserted-by":"publisher","DOI":"10.1162\/0891201053630264"},{"key":"S1351324922000092_ref21","volume-title":"Webster\u2019s Third New International Dictionary of the English Language, Unabridged","author":"Gove","year":"1961"},{"key":"S1351324922000092_ref26","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.coling-main.156"},{"key":"S1351324922000092_ref63","unstructured":"Recski, G. , Borb\u00e9ly, G. and Bolev\u00e1cz, A. (2016). Building definition graphs using monolingual dictionaries of Hungarian. In Tan\u00e1cs A., Varga V. and Vincze V. (eds), XI. Magyar Sz\u00e1mit\u00f3g\u00e9pes Nyelv\u00e9szeti Konferencia [11th Hungarian Conference on Computational Linguistics, Szeged, Hungary."},{"key":"S1351324922000092_ref59","doi-asserted-by":"crossref","unstructured":"Pavlick, E. , Rastogi, P. , Ganitkevitch, J. , Van Durme, B. and Callison-Burch, C. (2015). PPDB 2.0: Better paraphrase ranking, fine-grained entailment relations, word embeddings, and style classification. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), Beijing, China. Association for Computational Linguistics, pp. 425\u2013430.","DOI":"10.3115\/v1\/P15-2070"},{"key":"S1351324922000092_ref4","unstructured":"Baroni, M. , Bernardi, R. , Do, N.-Q. and Shan, C.-c. (2012). Entailment above the word level in distributional semantics. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France. Association for Computational Linguistics, pp. 23\u201332."},{"key":"S1351324922000092_ref31","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W19-4310"},{"key":"S1351324922000092_ref48","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W16-1702"},{"key":"S1351324922000092_ref73","first-page":"5998","volume-title":"Advances in Neural Information Processing Systems 30","author":"Vaswani","year":"2017"},{"key":"S1351324922000092_ref49","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/N15-1092"},{"key":"S1351324922000092_ref14","unstructured":"Gerdes, K. and Kahane, S. (2015). Non-constituent coordination and other coordinative constructions as dependency graphs. In Proceedings of the Third International Conference on Dependency Linguistics (Depling 2015), Uppsala, Sweden. Uppsala University, Uppsala, Sweden, pp. 101\u2013110."},{"key":"S1351324922000092_ref65","unstructured":"Roller, S. , Erk, K. and Boleda, G. (2014). Inclusive yet selective: Supervised distributional hypernymy detection. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland. Dublin City University and Association for Computational Linguistics, pp. 1025\u20131036."},{"key":"S1351324922000092_ref18","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.semeval-1.2"},{"key":"S1351324922000092_ref43","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D19-6304"},{"key":"S1351324922000092_ref11","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511977619"},{"key":"S1351324922000092_ref79","unstructured":"Xue, N. , Bojar, O. , Haji\u010d, J. , Palmer, M. , Ure\u0161ov\u00e1, Z. and Zhang, X. (2014). Not an interlingua, but close: Comparison of English AMRs to Chinese and Czech. In Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC\u201914), Reykjavik, Iceland. European Language Resources Association (ELRA), pp. 1765\u20131772."},{"key":"S1351324922000092_ref66","volume-title":"FrameNet II: Extended Theory and Practice","author":"Ruppenhofer","year":"2006"},{"key":"S1351324922000092_ref61","unstructured":"Recski, G. (2016). Building concept graphs from monolingual dictionary entries. In Calzolari N., Choukri K., Declerck T., Grobelnik, M., Maegaard B., Mariani J., Moreno, A., Odijk J. and Piperidis S. (eds), Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016), Portoro\u017e, Slovenia. European Language Resources Association (ELRA)."},{"key":"S1351324922000092_ref40","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-32024-8_16"},{"key":"S1351324922000092_ref56","unstructured":"Nivre, J. , Abrams, M. , Agi\u0107, \u017d. et al. (2018). Universal Dependencies 2.3. LINDAT\/CLARIN digital library at the Institute of Formal and Applied Linguistics (\u00daFAL), Faculty of Mathematics and Physics, Charles University."},{"key":"S1351324922000092_ref69","unstructured":"Schuster, S. and Manning, C.D. (2016). Enhanced English Universal Dependencies: An improved representation for natural language understanding tasks. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC\u201916), Portoro\u017e, Slovenia. European Language Resources Association (ELRA), pp. 2371\u20132378."},{"key":"S1351324922000092_ref45","unstructured":"Lan, Z. , Chen, M. , Goodman, S. , Gimpel, K. , Sharma, P. and Soricut, R. (2020). ALBERT: A lite BERT for self-supervised learning of language representations. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia. OpenReview.net."},{"key":"S1351324922000092_ref16","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1004"},{"key":"S1351324922000092_ref9","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1152"},{"key":"S1351324922000092_ref10","unstructured":"Chen, Z. , Cui, Y. , Ma, W. , Wang, S. , Liu, T. and Hu, G. (2018). Hfl-rc system at semeval-2018 task 11: Hybrid multi-aspects model for commonsense reading comprehension. arXiv preprint arXiv:1803.05655."},{"key":"S1351324922000092_ref82","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1009"},{"key":"S1351324922000092_ref33","doi-asserted-by":"publisher","DOI":"10.1007\/s10579-007-9048-2"},{"key":"S1351324922000092_ref28","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1104"},{"key":"S1351324922000092_ref83","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i05.6510"},{"key":"S1351324922000092_ref72","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/N18-1056"},{"key":"S1351324922000092_ref50","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1441"},{"key":"S1351324922000092_ref29","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1035"},{"key":"S1351324922000092_ref7","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D15-1075"},{"key":"S1351324922000092_ref13","unstructured":"Gabrilovich, E. , Ringgaard, M. and Subramanya, A. (2013). Facc1: Freebase annotation of clueweb corpora, version 1 (release date 2013-06-26, format version 1, correction level 0)."},{"key":"S1351324922000092_ref15","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D17-1185"},{"key":"S1351324922000092_ref8","unstructured":"Bullon, S. (2003). Longman Dictionary of Contemporary English, 4th Edn. M\u00fcnich, Germany: Longman."},{"key":"S1351324922000092_ref12","unstructured":"Devlin, J. , Chang, M.-W. , Lee, K. and Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota. Association for Computational Linguistics, pp. 4171\u20134186."},{"key":"S1351324922000092_ref30","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.coling-main.459"},{"key":"S1351324922000092_ref22","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P15-1143"},{"key":"S1351324922000092_ref47","doi-asserted-by":"crossref","unstructured":"Levy, O. , Remus, S. , Biemann, C. and Dagan, I. (2015). Do supervised distributional methods really learn lexical inference relations? In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado. Association for Computational Linguistics, pp. 970\u2013976.","DOI":"10.3115\/v1\/N15-1098"},{"key":"S1351324922000092_ref71","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W19-4810"},{"key":"S1351324922000092_ref77","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.semeval-1.31"},{"key":"S1351324922000092_ref23","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1170"},{"key":"S1351324922000092_ref32","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W18-6009"},{"key":"S1351324922000092_ref35","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W17-3520"},{"key":"S1351324922000092_ref54","doi-asserted-by":"publisher","DOI":"10.3758\/BF03195588"},{"key":"S1351324922000092_ref53","doi-asserted-by":"publisher","DOI":"10.1145\/219717.219748"},{"key":"S1351324922000092_ref55","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D17-1022"},{"key":"S1351324922000092_ref67","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.conll-shared.5"},{"key":"S1351324922000092_ref75","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1490"},{"key":"S1351324922000092_ref38","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1014"}],"container-title":["Natural Language Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.cambridge.org\/core\/services\/aop-cambridge-core\/content\/view\/S1351324922000092","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,11]],"date-time":"2023-09-11T02:07:01Z","timestamp":1694398021000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.cambridge.org\/core\/product\/identifier\/S1351324922000092\/type\/journal_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2,28]]},"references-count":84,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2023,9]]}},"alternative-id":["S1351324922000092"],"URL":"https:\/\/doi.org\/10.1017\/s1351324922000092","relation":{},"ISSN":["1351-3249","1469-8110"],"issn-type":[{"value":"1351-3249","type":"print"},{"value":"1469-8110","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,2,28]]},"assertion":[{"value":"\u00a9 The Author(s), 2022. Published by Cambridge University Press","name":"copyright","label":"Copyright","group":{"name":"copyright_and_licensing","label":"Copyright and Licensing"}},{"value":"This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https:\/\/creativecommons.org\/licenses\/by\/4.0\/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.","name":"license","label":"License","group":{"name":"copyright_and_licensing","label":"Copyright and Licensing"}},{"value":"This content has been made available to all.","name":"free","label":"Free to read"}]}}