{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,12]],"date-time":"2024-06-12T06:40:10Z","timestamp":1718174410450},"reference-count":42,"publisher":"Cambridge University Press (CUP)","issue":"1","license":[{"start":{"date-parts":[[2019,8,5]],"date-time":"2019-08-05T00:00:00Z","timestamp":1564963200000},"content-version":"unspecified","delay-in-days":0,"URL":"https:\/\/www.cambridge.org\/core\/terms"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Combinator. Probab. Comp."],"published-print":{"date-parts":[[2020,1]]},"abstract":"Abstract<\/jats:title>The Hamming graphH<\/jats:italic>(d<\/jats:italic>,n<\/jats:italic>) is the Cartesian product ofd<\/jats:italic>complete graphs onn<\/jats:italic>vertices. Let${m=d(n-1)}$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>be the degree and$V = n^d$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>be the number of vertices ofH<\/jats:italic>(d<\/jats:italic>,n<\/jats:italic>). Let$p_c^{(d)}$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>be the critical point for bond percolation onH<\/jats:italic>(d<\/jats:italic>,n<\/jats:italic>). We show that, for$d \\in \\mathbb{N}$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>fixed and$n \\to \\infty$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>,$$p_c^{(d)} = {1 \\over m} + {{2{d^2} - 1} \\over {2{{(d - 1)}^2}}}{1 \\over {{m^2}}} + O({m^{ - 3}}) + O({m^{ - 1}}{V^{ - 1\/3}}),$$<\/jats:tex-math><\/jats:alternatives><\/jats:disp-formula>which extends the asymptotics found in [10] by one order. The term$O(m^{-1}V^{-1\/3})$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>is the width of the critical window. For$d=4,5,6$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>we have$m^{-3} = O(m^{-1}V^{-1\/3})$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>, and so the above formula represents the full asymptotic expansion of$p_c^{(d)}$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>. In [16] we show that this formula is a crucial ingredient in the study of critical bond percolation onH<\/jats:italic>(d<\/jats:italic>,n<\/jats:italic>) for$d=2,3,4$<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>. The proof uses a lace expansion for the upper bound and a novel comparison with a branching random walk for the lower bound. The proof of the lower bound also yields a refined asymptotics for the susceptibility of a subcritical Erd\u00f6s\u2013R\u00e9nyi random graph.<\/jats:p>","DOI":"10.1017\/s0963548319000208","type":"journal-article","created":{"date-parts":[[2019,8,5]],"date-time":"2019-08-05T09:36:44Z","timestamp":1564997804000},"page":"68-100","source":"Crossref","is-referenced-by-count":3,"title":["Expansion of Percolation Critical Points for Hamming Graphs"],"prefix":"10.1017","volume":"29","author":[{"given":"Lorenzo","family":"Federico","sequence":"first","affiliation":[]},{"given":"Remco","family":"Van Der Hofstad","sequence":"additional","affiliation":[]},{"given":"Frank","family":"Den Hollander","sequence":"additional","affiliation":[]},{"given":"Tim","family":"Hulshof","sequence":"additional","affiliation":[]}],"member":"56","published-online":{"date-parts":[[2019,8,5]]},"reference":[{"key":"S0963548319000208_ref28","doi-asserted-by":"publisher","DOI":"10.1002\/rsa.20074"},{"key":"S0963548319000208_ref18","doi-asserted-by":"publisher","DOI":"10.1007\/s10955-012-0684-6"},{"key":"S0963548319000208_ref16","unstructured":"[16] Federico, L. , van der Hofstad, R. , den Hollander, F. and Hulshof, T. (2019) The scaling limit for critical percolation on the Hamming graph. In preparation."},{"key":"S0963548319000208_ref14","doi-asserted-by":"crossref","first-page":"290","DOI":"10.5486\/PMD.1959.6.3-4.12","article-title":"On random graphs, I","volume":"6","author":"Erd\u0151s","year":"1959","journal-title":"Publ. Math. Debrecen"},{"key":"S0963548319000208_ref13","volume-title":"Random Graph Dynamics","author":"Durrett","year":"2007"},{"key":"S0963548319000208_ref22","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-62473-0"},{"key":"S0963548319000208_ref23","doi-asserted-by":"publisher","DOI":"10.1017\/9781316779422"},{"key":"S0963548319000208_ref10","doi-asserted-by":"publisher","DOI":"10.1214\/009117905000000260"},{"key":"S0963548319000208_ref9","doi-asserted-by":"publisher","DOI":"10.1002\/rsa.20051"},{"key":"S0963548319000208_ref5","doi-asserted-by":"publisher","DOI":"10.1214\/EJP.v15-817"},{"key":"S0963548319000208_ref25","doi-asserted-by":"publisher","DOI":"10.1002\/rsa.20288"},{"key":"S0963548319000208_ref17","doi-asserted-by":"publisher","DOI":"10.1214\/16-ECP4479"},{"key":"S0963548319000208_ref4","doi-asserted-by":"publisher","DOI":"10.2307\/3213860"},{"key":"S0963548319000208_ref1","doi-asserted-by":"publisher","DOI":"10.1007\/BF01212322"},{"key":"S0963548319000208_ref41","doi-asserted-by":"publisher","DOI":"10.1214\/18-ECP126"},{"key":"S0963548319000208_ref8","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511814068"},{"key":"S0963548319000208_ref2","doi-asserted-by":"publisher","DOI":"10.1007\/BF01015729"},{"key":"S0963548319000208_ref26","doi-asserted-by":"publisher","DOI":"10.1007\/s00184-013-0473-5"},{"key":"S0963548319000208_ref3","doi-asserted-by":"publisher","DOI":"10.1214\/aop\/1024404421"},{"key":"S0963548319000208_ref19","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-03981-6"},{"key":"S0963548319000208_ref11","doi-asserted-by":"publisher","DOI":"10.1007\/s00493-006-0022-1"},{"key":"S0963548319000208_ref34","first-page":"856","article-title":"Coincidence of critical points in percolation problems","volume":"33","author":"Menshikov","year":"1986","journal-title":"Soviet Math. Doklady"},{"key":"S0963548319000208_ref20","first-page":"141","volume-title":"Percolation Theory at Saint-Flour","author":"Grimmett","year":"2012"},{"key":"S0963548319000208_ref27","doi-asserted-by":"publisher","DOI":"10.4171\/JEMS\/679"},{"key":"S0963548319000208_ref35","doi-asserted-by":"publisher","DOI":"10.1214\/18-EJP171"},{"key":"S0963548319000208_ref6","doi-asserted-by":"publisher","DOI":"10.1214\/11-AOP680"},{"key":"S0963548319000208_ref7","doi-asserted-by":"publisher","DOI":"10.2307\/1999405"},{"key":"S0963548319000208_ref24","doi-asserted-by":"publisher","DOI":"10.1007\/s00440-009-0200-3"},{"key":"S0963548319000208_ref21","doi-asserted-by":"publisher","DOI":"10.1007\/BF02108785"},{"key":"S0963548319000208_ref15","doi-asserted-by":"publisher","DOI":"10.1016\/0898-1221(81)90137-1"},{"key":"S0963548319000208_ref37","doi-asserted-by":"publisher","DOI":"10.1214\/07-AOP358"},{"key":"S0963548319000208_ref29","doi-asserted-by":"publisher","DOI":"10.1017\/S0963548306007498"},{"key":"S0963548319000208_ref30","doi-asserted-by":"publisher","DOI":"10.1002\/rsa.3240040303"},{"key":"S0963548319000208_ref31","doi-asserted-by":"publisher","DOI":"10.1214\/17-EJP52"},{"key":"S0963548319000208_ref32","doi-asserted-by":"publisher","DOI":"10.1214\/13-AAP985"},{"key":"S0963548319000208_ref33","doi-asserted-by":"publisher","DOI":"10.1090\/S0002-9947-1994-1138950-5"},{"key":"S0963548319000208_ref36","first-page":"133","article-title":"Component sizes of the random graph outside the scaling window","volume":"3","author":"Nachmias","year":"2007","journal-title":"ALEA Lat. Am. J. Probab. Math. Stat."},{"key":"S0963548319000208_ref38","doi-asserted-by":"publisher","DOI":"10.1002\/rsa.20277"},{"key":"S0963548319000208_ref39","doi-asserted-by":"publisher","DOI":"10.2307\/1426333"},{"key":"S0963548319000208_ref42","doi-asserted-by":"publisher","DOI":"10.1007\/BF00535742"},{"key":"S0963548319000208_ref12","doi-asserted-by":"publisher","DOI":"10.1007\/BF01206182"},{"key":"S0963548319000208_ref40","doi-asserted-by":"publisher","DOI":"10.1006\/jctb.2000.2033"}],"container-title":["Combinatorics, Probability and Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.cambridge.org\/core\/services\/aop-cambridge-core\/content\/view\/S0963548319000208","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,9,18]],"date-time":"2023-09-18T20:55:22Z","timestamp":1695070522000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.cambridge.org\/core\/product\/identifier\/S0963548319000208\/type\/journal_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8,5]]},"references-count":42,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2020,1]]}},"alternative-id":["S0963548319000208"],"URL":"https:\/\/doi.org\/10.1017\/s0963548319000208","relation":{},"ISSN":["0963-5483","1469-2163"],"issn-type":[{"value":"0963-5483","type":"print"},{"value":"1469-2163","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,8,5]]}}}