{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T16:57:45Z","timestamp":1742403465882},"reference-count":45,"publisher":"Cambridge University Press (CUP)","issue":"1","license":[{"start":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T00:00:00Z","timestamp":1624406400000},"content-version":"unspecified","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Robotica"],"published-print":{"date-parts":[[2023,1]]},"abstract":"Abstract<\/jats:title>We present extensions to ChainQueen, an open source, fully differentiable material point method simulator for soft robotics. Previous work established ChainQueen as a powerful tool for inference, control, and co-design for soft robotics. We detail enhancements to ChainQueen, allowing for more efficient simulation and optimization and expressive co-optimization over material properties and geometric parameters. We package our simulator extensions in an easy-to-use, modular application programming interface (API) with predefined observation models, controllers, actuators, optimizers, and geometric processing tools, making it simple to prototype complex experiments in 50 lines or fewer. We demonstrate the power of our simulator extensions in over nine simulated experiments.<\/jats:p>","DOI":"10.1017\/s0263574721000722","type":"journal-article","created":{"date-parts":[[2021,6,23]],"date-time":"2021-06-23T07:26:51Z","timestamp":1624433211000},"page":"74-104","source":"Crossref","is-referenced-by-count":15,"title":["Advanced soft robot modeling in ChainQueen"],"prefix":"10.1017","volume":"41","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6937-6204","authenticated-orcid":false,"given":"Andrew","family":"Spielberg","sequence":"first","affiliation":[]},{"given":"Tao","family":"Du","sequence":"additional","affiliation":[]},{"given":"Yuanming","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Daniela","family":"Rus","sequence":"additional","affiliation":[]},{"given":"Wojciech","family":"Matusik","sequence":"additional","affiliation":[]}],"member":"56","published-online":{"date-parts":[[2021,6,23]]},"reference":[{"key":"S0263574721000722_ref11","unstructured":"[11] Li, Y. , Wu, J. , Tedrake, R. , Tenenbaum, J. B. and Torralba, A. , \u201cLearning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, Fluids,\u201d International Conference on Learning Representations (ICLR) (2019)."},{"key":"S0263574721000722_ref33","first-page":"1","article-title":"The affine particle-in-cell method","volume":"34","author":"Jiang","year":"2015","journal-title":"ACM Trans. Graph."},{"key":"S0263574721000722_ref35","doi-asserted-by":"crossref","unstructured":"[35] Liu, T. , Bouaziz, S. and Kavan, L. , \u201cQuasi-newton methods for real-time simulation of hyperelastic materials,\u201d ACM Trans. Graphics (TOG) 36(3), 1\u201316 (2017).","DOI":"10.1145\/2990496"},{"key":"S0263574721000722_ref36","doi-asserted-by":"publisher","DOI":"10.1145\/3180491"},{"key":"S0263574721000722_ref42","first-page":"8282","article-title":"Learning-in-the-Loop Optimization: End-to-End Control and Co-Design of Soft Robots Through Learned Deep Latent Representations","author":"Spielberg","year":"2019","journal-title":"Advances in Neural Information Processing Systems"},{"key":"S0263574721000722_ref17","doi-asserted-by":"publisher","DOI":"10.1145\/2897824.2925906"},{"key":"S0263574721000722_ref23","first-page":"7178","article-title":"End-to-End Differentiable Physics for Learning and Control","author":"de Avila Belbute-Peres","year":"2018","journal-title":"Advances in Neural Information Processing Systems"},{"key":"S0263574721000722_ref28","first-page":"8799","article-title":"Flexible Neural Representation for Physics Prediction","author":"Mrowca","year":"2018","journal-title":"Advances in Neural Information Processing Systems"},{"key":"S0263574721000722_ref25","first-page":"4502","article-title":"Interaction Networks for Learning About Objects, Relations and Physics","author":"Battaglia","year":"2016","journal-title":"Advances in Neural Information Processing Systems"},{"key":"S0263574721000722_ref12","first-page":"10","article-title":"CppAD: A package for C++ algorithmic differentiation","volume":"57","author":"Bell","year":"2012","journal-title":"Comput. Infrastruct. Oper. Res."},{"key":"S0263574721000722_ref21","unstructured":"[21] Guo, Y. J. and Nairn, J. A. , \u201cThree-dimensional dynamic fracture analysis using the material point method,\u201d Comput. Modeling Eng. Sci. 16(3), 141 (2006)."},{"key":"S0263574721000722_ref4","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1145\/2661735.2661737","article-title":"Unshackling evolution: Evolving soft robots with multiple materials and a powerful generative encoding","volume":"7","author":"Cheney","year":"2014","journal-title":"ACM SIGEVOlution"},{"key":"S0263574721000722_ref19","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073623"},{"key":"S0263574721000722_ref27","doi-asserted-by":"crossref","unstructured":"[27] Giftthaler, M. , Neunert, M. , St\u00c4uble, M. and Buchli, J. , \u201cThe Control Toolbox\u00c2\u20ac\u201dan Open-Source C++ Library for Robotics, Optimal and Model Predictive Control,\u201d 2018 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR) (IEEE, 2018) pp. 123\u2013129.","DOI":"10.1109\/SIMPAR.2018.8376281"},{"key":"S0263574721000722_ref9","unstructured":"[9] NVIDIA Gameworks, Nvidia flex (2018)."},{"key":"S0263574721000722_ref20","doi-asserted-by":"publisher","DOI":"10.1145\/3197517.3201293"},{"key":"S0263574721000722_ref7","doi-asserted-by":"crossref","unstructured":"[7] Barbi\u010c, J. and Popovi\u0106, J. , \u201cReal-time control of physically based simulations using gentle forces,\u201d ACM Trans. Graphics (TOG) 27(5), 163 (2008). ACM.","DOI":"10.1145\/1409060.1409116"},{"key":"S0263574721000722_ref39","doi-asserted-by":"publisher","DOI":"10.1295\/polymj.36.151"},{"key":"S0263574721000722_ref16","doi-asserted-by":"publisher","DOI":"10.1145\/2461912.2461948"},{"key":"S0263574721000722_ref13","unstructured":"[13] Abadi, M. , Barham, P. , Chen, J. , Chen, Z. , Davis, A. , Dean, J. , Devin, M. , Ghemawat, S. , Irving, G. , Isard, M. , Kudlur, M. , Levenberg, J. , Monga, R. , Moore, S. , Murray, D. G. , Steiner, B. , Tucker, P. , Vasudevan, V. , Warden, P. , Wicke, M. , Yu, Y. and Zheng, X. , \u201cTensorflow: A System for Large-Scale Machine Learning,\u201d 12th $\\{$ USENIX $\\}$ Symposium on Operating Systems Design and Implementation ( $\\{$ OSDI $\\}$ 16) (2016) pp. 265\u2013283."},{"key":"S0263574721000722_ref6","first-page":"20","volume-title":"ACM SIGGRAPH 2012 Courses","author":"Sifakis","year":"2012"},{"key":"S0263574721000722_ref29","unstructured":"[29] Sanchez-Gonzalez, A. , Heess, N. , Springenberg, J. T. , Merel, J. , Riedmiller, M. , Hadsell, R. and Battaglia, P. , \u201cGraph networks as learnable physics engines for inference and control,\u201d arXiv preprint arXiv:1806.01242 (2018)."},{"key":"S0263574721000722_ref30","doi-asserted-by":"crossref","unstructured":"[30] Toussaint, M. , Allen, K. , Smith, K. A. and Tenenbaum, J. B. , \u201cDifferentiable Physics and Stable Modes for Tool-Use and Manipulation Planning,\u201d In: Robotics: Science and Systems (2018).","DOI":"10.15607\/RSS.2018.XIV.044"},{"key":"S0263574721000722_ref38","doi-asserted-by":"publisher","DOI":"10.1109\/LRA.2016.2521889"},{"key":"S0263574721000722_ref3","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1089\/soro.2013.0010","article-title":"Dynamic simulation of soft multimaterial 3d-printed objects","volume":"1","author":"Hiller","year":"2014","journal-title":"Soft Rob."},{"key":"S0263574721000722_ref22","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1145\/3130800.3130879","article-title":"An adaptive generalized interpolation material point method for simulating elastoplastic materials","volume":"36","author":"Gao","year":"2017","journal-title":"ACM Trans. Graphics (TOG)"},{"key":"S0263574721000722_ref45","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1007\/978-1-4614-4469-5_4","volume-title":"Modeling and Optimization in Space Engineering","author":"B\u00dcskens","year":"2012"},{"key":"S0263574721000722_ref8","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46460-2_13"},{"key":"S0263574721000722_ref32","first-page":"771","article-title":"Differentiable Cloth Simulation for Inverse Problems","author":"Liang","year":"2019","journal-title":"Advances in Neural Information Processing Systems"},{"key":"S0263574721000722_ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ICRA.2019.8794333"},{"key":"S0263574721000722_ref41","doi-asserted-by":"crossref","unstructured":"[41] Fang, Y. , Hu, Y. , S.-m. Hu and C. Jiang, \u201cA temporally adaptive material point method with regional time stepping,\u201d Comput. Graphics Forum 37(8), 195\u2013204 (2018).","DOI":"10.1111\/cgf.13524"},{"key":"S0263574721000722_ref14","volume-title":"31st Conference on Neural Information Processing Systems (NIPS)","author":"Paszke","year":"2017"},{"key":"S0263574721000722_ref18","doi-asserted-by":"publisher","DOI":"10.1145\/3306346.3322968"},{"key":"S0263574721000722_ref31","unstructured":"[31] Schenck, C. and Fox, D. , \u201cSpnets: Differentiable Fluid Dynamics for Deep Neural Networks,\u201d Conference on Robot Learning (2018) pp. 317\u2013335."},{"key":"S0263574721000722_ref10","doi-asserted-by":"publisher","DOI":"10.1145\/2601097.2601152"},{"key":"S0263574721000722_ref43","unstructured":"[43] PaGMO Developers, Pagmo and pygmo (2019)."},{"key":"S0263574721000722_ref34","volume-title":"Nonlinear Continuum Mechanics for Finite Element Analysis","author":"Bonet","year":"1997"},{"key":"S0263574721000722_ref5","doi-asserted-by":"publisher","DOI":"10.1080\/01691864.2017.1395362"},{"key":"S0263574721000722_ref37","unstructured":"[37] Stomakhin, A. , Howes, R. , Schroeder, C. and Teran, J. M. , \u201cEnergetically Consistent Invertible Elasticity,\u201d Proceedings of the ACM SIGGRAPH\/Eurographics Symposium on Computer Animation (Eurographics Association, 2012) pp. 25\u201332."},{"key":"S0263574721000722_ref44","unstructured":"[44] Kingma, D. P. and Ba, J. , \u201cAdam: A method for stochastic optimization,\u201d arXiv preprint arXiv:1412.6980 (2014)."},{"key":"S0263574721000722_ref26","unstructured":"[26] Chang, M. B. , Ullman, T. , Torralba, A. and Tenenbaum, J. B. , \u201cA compositional object-based approach to learning physical dynamics,\u201d arXiv preprint arXiv:1612.00341 (2016)."},{"key":"S0263574721000722_ref40","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1089\/soro.2014.0022","article-title":"A recipe for soft fluidic elastomer robots","volume":"2","author":"Marchese","year":"2015","journal-title":"Soft Rob."},{"key":"S0263574721000722_ref24","doi-asserted-by":"crossref","unstructured":"[24] Degrave, J. , Hermans, M. , Dambre, J. and Wyffels, F. , \u201cA differentiable physics engine for deep learning in robotics,\u201d Front. Neurorob. 13 (2019).","DOI":"10.3389\/fnbot.2019.00006"},{"key":"S0263574721000722_ref2","doi-asserted-by":"publisher","DOI":"10.1016\/0010-4655(94)00170-7"},{"key":"S0263574721000722_ref15","first-page":"24","volume-title":"ACM SIGGRAPH 2016 Courses","author":"Jiang","year":"2016"}],"container-title":["Robotica"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.cambridge.org\/core\/services\/aop-cambridge-core\/content\/view\/S0263574721000722","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,12]],"date-time":"2022-12-12T03:04:30Z","timestamp":1670814270000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.cambridge.org\/core\/product\/identifier\/S0263574721000722\/type\/journal_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,23]]},"references-count":45,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2023,1]]}},"alternative-id":["S0263574721000722"],"URL":"https:\/\/doi.org\/10.1017\/s0263574721000722","relation":{},"ISSN":["0263-5747","1469-8668"],"issn-type":[{"value":"0263-5747","type":"print"},{"value":"1469-8668","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6,23]]}}}