{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,11,25]],"date-time":"2023-11-25T23:26:56Z","timestamp":1700954816956},"reference-count":19,"publisher":"Cambridge University Press (CUP)","issue":"3","license":[{"start":{"date-parts":[[2021,8,16]],"date-time":"2021-08-16T00:00:00Z","timestamp":1629072000000},"content-version":"unspecified","delay-in-days":0,"URL":"https:\/\/www.cambridge.org\/core\/terms"}],"content-domain":{"domain":["cambridge.org"],"crossmark-restriction":true},"short-container-title":["J. symb. log."],"published-print":{"date-parts":[[2021,9]]},"abstract":"Abstract<\/jats:title>The general theory developed by Ben Yaacov for metric structures provides Fra\u00efss\u00e9 limits which are approximately ultrahomogeneous. We show here that this result can be strengthened in the case of relational metric structures. We give an extra condition that guarantees exact ultrahomogenous limits. The condition is quite general. We apply it to stochastic processes, the class of diversities, and its subclass of \n$L_1$\n<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula> diversities.<\/jats:p>","DOI":"10.1017\/jsl.2021.65","type":"journal-article","created":{"date-parts":[[2021,8,16]],"date-time":"2021-08-16T05:04:59Z","timestamp":1629090299000},"page":"913-934","update-policy":"http:\/\/dx.doi.org\/10.1017\/policypage","source":"Crossref","is-referenced-by-count":1,"title":["FRA\u00cfSS\u00c9 LIMITS FOR RELATIONAL METRIC STRUCTURES"],"prefix":"10.1017","volume":"86","author":[{"given":"DAVID","family":"BRYANT","sequence":"first","affiliation":[]},{"given":"ANDR\u00c9","family":"NIES","sequence":"additional","affiliation":[]},{"given":"PAUL","family":"TUPPER","sequence":"additional","affiliation":[]}],"member":"56","published-online":{"date-parts":[[2021,8,16]]},"reference":[{"key":"S0022481221000657_r1","doi-asserted-by":"publisher","DOI":"10.1016\/0001-8708(92)90061-O"},{"key":"S0022481221000657_r11","first-page":"323","volume-title":"General Topology and Its Relations to Modern Analysis and Algebra, VI (Prague, 1986)","volume":"16","author":"Kat\u011btov","year":"1988"},{"key":"S0022481221000657_r5","doi-asserted-by":"publisher","DOI":"10.1016\/j.aim.2012.08.008"},{"key":"S0022481221000657_r6","first-page":"1","article-title":"Diversities and the geometry of hypergraphs","volume":"16","author":"Bryant","year":"2014","journal-title":"Discrete Mathematics and Theoretical Computer Science"},{"key":"S0022481221000657_r7","volume-title":"Algorithms and Combinatorics","volume":"15","author":"Deza","year":"1997"},{"key":"S0022481221000657_r16","first-page":"43","article-title":"Sur un espace m\u00e9trique universel","volume":"51","author":"Urysohn","year":"1927","journal-title":"Bulletin des Sciences Mathematiques"},{"key":"S0022481221000657_r4","doi-asserted-by":"publisher","DOI":"10.1515\/agms-2017-0008"},{"key":"S0022481221000657_r10","doi-asserted-by":"publisher","DOI":"10.1016\/j.topol.2020.107381"},{"key":"S0022481221000657_r13","doi-asserted-by":"publisher","DOI":"10.1016\/j.topol.2007.04.029"},{"key":"S0022481221000657_r15","doi-asserted-by":"publisher","DOI":"10.4064\/aa-9-4-331-340"},{"key":"S0022481221000657_r9","volume-title":"Invariant descriptive set theory","volume":"293","author":"Gao","year":"2009"},{"key":"S0022481221000657_r2","doi-asserted-by":"publisher","DOI":"10.1016\/j.ejc.2006.04.007"},{"key":"S0022481221000657_r19","first-page":"315","article-title":"Model theory for metric structures","volume":"350","author":"Yaacov","year":"2008","journal-title":"London Mathematical Society Lecture Note Series"},{"key":"S0022481221000657_r12","volume-title":"Lectures on the Coupling Method","author":"Lindvall","year":"1992"},{"key":"S0022481221000657_r14","doi-asserted-by":"publisher","DOI":"10.1155\/2013\/675057"},{"key":"S0022481221000657_r17","doi-asserted-by":"publisher","DOI":"10.1016\/0097-3165(86)90089-0"},{"key":"S0022481221000657_r3","doi-asserted-by":"publisher","DOI":"10.1007\/s00285-011-0409-5"},{"key":"S0022481221000657_r18","first-page":"100","article-title":"Fra\u00efss\u00e9 limits of metric structures","volume":"80","author":"Yaacov","year":"2015","journal-title":"this Journal"},{"key":"S0022481221000657_r8","first-page":"540","article-title":"Sur certaines relations qui g\u00e9n\u00e9ralisent l\u2019ordre des nombres rationnels","volume":"237","author":"Fra\u00efss\u00e9","year":"1953","journal-title":"Competes Rendus de l\u2019Academie des Sciences Paris"}],"container-title":["The Journal of Symbolic Logic"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.cambridge.org\/core\/services\/aop-cambridge-core\/content\/view\/S0022481221000657","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,9]],"date-time":"2022-03-09T11:12:00Z","timestamp":1646824320000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.cambridge.org\/core\/product\/identifier\/S0022481221000657\/type\/journal_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8,16]]},"references-count":19,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2021,9]]}},"alternative-id":["S0022481221000657"],"URL":"https:\/\/doi.org\/10.1017\/jsl.2021.65","relation":{},"ISSN":["0022-4812","1943-5886"],"issn-type":[{"value":"0022-4812","type":"print"},{"value":"1943-5886","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,8,16]]},"assertion":[{"value":"\u00a9 Association for Symbolic Logic 2021","name":"copyright","label":"Copyright","group":{"name":"copyright_and_licensing","label":"Copyright and Licensing"}}]}}