{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,1]],"date-time":"2024-04-01T17:49:11Z","timestamp":1711993751089},"reference-count":28,"publisher":"Cambridge University Press (CUP)","issue":"1","license":[{"start":{"date-parts":[[2021,2,1]],"date-time":"2021-02-01T00:00:00Z","timestamp":1612137600000},"content-version":"unspecified","delay-in-days":0,"URL":"https:\/\/www.cambridge.org\/core\/terms"}],"content-domain":{"domain":["cambridge.org"],"crossmark-restriction":true},"short-container-title":["J. symb. log."],"published-print":{"date-parts":[[2021,3]]},"abstract":"Abstract<\/jats:title>We investigate the uniform computational content of the open and clopen Ramsey theorems in the Weihrauch lattice. While they are known to be equivalent to \n$\\mathrm {ATR_0}$\n<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula> from the point of view of reverse mathematics, there is not a canonical way to phrase them as multivalued functions. We identify eight different multivalued functions (five corresponding to the open Ramsey theorem and three corresponding to the clopen Ramsey theorem) and study their degree from the point of view of Weihrauch, strong Weihrauch, and arithmetic Weihrauch reducibility. In particular one of our functions turns out to be strictly stronger than any previously studied multivalued functions arising from statements around \n$\\mathrm {ATR}_0$\n<\/jats:tex-math><\/jats:alternatives><\/jats:inline-formula>.\n<\/jats:p>","DOI":"10.1017\/jsl.2021.10","type":"journal-article","created":{"date-parts":[[2021,2,1]],"date-time":"2021-02-01T08:49:16Z","timestamp":1612169356000},"page":"316-351","update-policy":"http:\/\/dx.doi.org\/10.1017\/policypage","source":"Crossref","is-referenced-by-count":1,"title":["THE OPEN AND CLOPEN RAMSEY THEOREMS IN THE WEIHRAUCH LATTICE"],"prefix":"10.1017","volume":"86","author":[{"given":"ALBERTO","family":"MARCONE","sequence":"first","affiliation":[]},{"given":"MANLIO","family":"VALENTI","sequence":"additional","affiliation":[]}],"member":"56","published-online":{"date-parts":[[2021,2,1]]},"reference":[{"key":"S0022481221000104_r12","doi-asserted-by":"publisher","DOI":"10.2168\/LMCS-9(2:2)2013"},{"key":"S0022481221000104_r23","volume-title":"Theory of Recursive Functions and Effective Computability","author":"Rogers","year":"1967"},{"key":"S0022481221000104_r7","first-page":"77","article-title":"Measuring the complexity of computational content (Dagstuhl seminar 15392)","volume":"5","author":"Brattka","year":"2016","journal-title":"Dagstuhl Reports"},{"key":"S0022481221000104_r1","doi-asserted-by":"publisher","DOI":"10.1007\/s001530050095"},{"key":"S0022481221000104_r11","doi-asserted-by":"publisher","DOI":"10.1215\/00294527-2009-018"},{"key":"S0022481221000104_r9","doi-asserted-by":"publisher","DOI":"10.1017\/jsl.2021.37"},{"key":"S0022481221000104_r25","first-page":"60","volume":"35","author":"Silver","year":"1970","journal-title":"Every analytic set is Ramsey"},{"key":"S0022481221000104_r15","doi-asserted-by":"publisher","DOI":"10.1016\/j.apal.2020.102789"},{"key":"S0022481221000104_r8","first-page":"1","article-title":"On the algebraic structure of Weihrauch degrees","volume":"14","author":"Brattka","year":"2018","journal-title":"Logical Methods in Computer Science"},{"key":"S0022481221000104_r4","first-page":"143","volume":"76","author":"Brattka","year":"2011","journal-title":"Weihrauch degrees, omniscience principles and weak computability"},{"key":"S0022481221000104_r3","doi-asserted-by":"publisher","DOI":"10.1016\/j.apal.2011.12.020"},{"key":"S0022481221000104_r2","doi-asserted-by":"publisher","DOI":"10.1002\/malq.200310125"},{"key":"S0022481221000104_r13","first-page":"1035","volume":"48","author":"Kastanas","year":"1983","journal-title":"On the Ramsey property for sets of reals"},{"key":"S0022481221000104_r22","unstructured":"[22] Pauly, A. , Computability on the space of countable ordinals. Preprint, 2017. arXiv:1501.00386."},{"key":"S0022481221000104_r14","first-page":"1006","volume":"85","author":"Kihara","year":"2020","journal-title":"Searching for an analogue of"},{"key":"S0022481221000104_r19","doi-asserted-by":"publisher","DOI":"10.1016\/S0049-237X(08)72002-0"},{"key":"S0022481221000104_r21","doi-asserted-by":"publisher","DOI":"10.3233\/COM-150049"},{"key":"S0022481221000104_r24","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-12013-2"},{"key":"S0022481221000104_r10","first-page":"193","volume":"38","author":"Galvin","year":"1973","journal-title":"Borel sets and Ramsey\u2019s theorem"},{"key":"S0022481221000104_r18","unstructured":"[15] Goh, J. L. , Pauly, A. , and Valenti, M. , Finding descending sequences through ill-founded linear orders, this Journal, to appear. Preprint available from arXiv:2010.03840."},{"key":"S0022481221000104_r28","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-56999-9"},{"key":"S0022481221000104_r16","unstructured":"[13] Goh, J. L. , Measuring the relative complexity of mathematical constructions and theorems , Ph.D. thesis, Cornell University, 2019."},{"key":"S0022481221000104_r6","unstructured":"[7] Brattka, V. , Gherardi, G. , and Pauly, A. , Weihrauch complexity in computable analysis. Preprint, 2017. arXiv:1707.03202v1."},{"key":"S0022481221000104_r17","unstructured":"[14] Goh, J. L. , Some computability-theoretic reductions between principles around $\\mathrm{ATR}_0$ . Preprint, 2019. arXiv:1905.06868."},{"key":"S0022481221000104_r20","doi-asserted-by":"publisher","DOI":"10.1017\/S0305004100038603"},{"key":"S0022481221000104_r26","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511581007"},{"key":"S0022481221000104_r5","doi-asserted-by":"publisher","DOI":"10.1016\/j.apal.2020.102914"},{"key":"S0022481221000104_r27","doi-asserted-by":"publisher","DOI":"10.1090\/S0002-9947-1978-0491103-7"}],"container-title":["The Journal of Symbolic Logic"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.cambridge.org\/core\/services\/aop-cambridge-core\/content\/view\/S0022481221000104","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,8]],"date-time":"2021-07-08T11:04:02Z","timestamp":1625742242000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.cambridge.org\/core\/product\/identifier\/S0022481221000104\/type\/journal_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2,1]]},"references-count":28,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2021,3]]}},"alternative-id":["S0022481221000104"],"URL":"https:\/\/doi.org\/10.1017\/jsl.2021.10","relation":{},"ISSN":["0022-4812","1943-5886"],"issn-type":[{"value":"0022-4812","type":"print"},{"value":"1943-5886","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,2,1]]},"assertion":[{"value":"\u00a9 The Association for Symbolic Logic 2021","name":"copyright","label":"Copyright","group":{"name":"copyright_and_licensing","label":"Copyright and Licensing"}}]}}