{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,3]],"date-time":"2024-06-03T05:53:34Z","timestamp":1717394014349},"reference-count":58,"publisher":"Elsevier BV","issue":"3","license":[{"start":{"date-parts":[[2000,11,1]],"date-time":"2000-11-01T00:00:00Z","timestamp":973036800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Artificial Intelligence in Medicine"],"published-print":{"date-parts":[[2000,11]]},"DOI":"10.1016\/s0933-3657(00)00063-4","type":"journal-article","created":{"date-parts":[[2002,7,25]],"date-time":"2002-07-25T16:25:45Z","timestamp":1027614345000},"page":"183-204","source":"Crossref","is-referenced-by-count":64,"title":["Model selection for a medical diagnostic decision support system: a breast cancer detection case"],"prefix":"10.1016","volume":"20","author":[{"given":"David","family":"West","sequence":"first","affiliation":[]},{"given":"Vivian","family":"West","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/S0933-3657(00)00063-4_BIB1","doi-asserted-by":"crossref","first-page":"817","DOI":"10.1148\/radiology.196.3.7644649","article-title":"Breast cancer: prediction with artificial neural network based on bi-rads standardized lexicon","volume":"196","author":"Baker","year":"1995","journal-title":"Radiology"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB2","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1148\/radiology.198.1.8539365","article-title":"Artificial neural network: improving the quality of breast biopsy recommendations","volume":"198","author":"Baker","year":"1996","journal-title":"Radiology"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB3","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1162\/neco.1990.2.4.480","article-title":"Use of an artificial neural network for data analysis in clinical decision-making: the diagnosis of acute coronary occlusion","volume":"2","author":"Baxt","year":"1990","journal-title":"Neural Comput."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB4","doi-asserted-by":"crossref","first-page":"843","DOI":"10.7326\/0003-4819-115-11-843","article-title":"Use of an artificial neural network for the diagnosis of myocardial infarction","volume":"115","author":"Baxt","year":"1991","journal-title":"Ann. Internal Med."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB5","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1177\/0272989X9401400303","article-title":"A neural network trained to identify the presence of myocardial infarction bases some decisions on clinical associations that differ from accepted clinical teaching","volume":"14","author":"Baxt","year":"1994","journal-title":"Med. Decis. Mak."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB6","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/0304-3835(94)90093-0","article-title":"Computer-assisted image classification: use of neural networks in anatomic pathology","volume":"77","author":"Becker","year":"1994","journal-title":"Cancer Lett."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB7","doi-asserted-by":"crossref","first-page":"469","DOI":"10.1016\/S0140-6736(96)11196-X","article-title":"Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions","volume":"350","author":"Bottaci","year":"1997","journal-title":"Lancet"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB8","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1016\/0893-6080(90)90008-9","article-title":"A comparison of neural network and other pattern recognition approaches to the diagnosis of low back disorders","volume":"3","author":"Bounds","year":"1990","journal-title":"Neural Networks"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB9","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/BF00117832","article-title":"Stacked regressions","volume":"24","author":"Breiman","year":"1995","journal-title":"Machine Learning"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB10","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"26","author":"Breiman","year":"1996","journal-title":"Machine Learning"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB11","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1177\/0272989X9101100205","article-title":"Signal detectability: the use of ROC curves and their analyses","volume":"11","author":"Centor","year":"1991","journal-title":"Med. Decis. Mak."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB12","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0304-3835(94)90094-9","article-title":"Hybrid lung nodule detection (HLND) system","volume":"77","author":"Chiou","year":"1994","journal-title":"Cancer Lett."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB13","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1016\/0002-9149(89)90524-9","article-title":"International application of a new probability algorithm for the diagnosis of coronary artery disease","volume":"64","author":"Detrano","year":"1989","journal-title":"Am. J. Cardiol."},{"issue":"10","key":"10.1016\/S0933-3657(00)00063-4_BIB14","doi-asserted-by":"crossref","first-page":"1218","DOI":"10.1002\/art.1780341003","article-title":"The European spondylarthropathy study group preliminary criteria for the classification of spondylarthropathy","volume":"34","author":"Dougados","year":"1991","journal-title":"Arthritis Rheum."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB15","doi-asserted-by":"crossref","first-page":"935","DOI":"10.1016\/S0140-6736(05)63272-2","article-title":"Artificial neural networks improve diagnosis of acute myocardial infarction","volume":"350","author":"Fricker","year":"1997","journal-title":"Lancet"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB16","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1016\/S0926-6410(97)00038-4","article-title":"Neural network classification and correlation analysis of EEG and MEG activity accompanying spontaneous reversals of the Necker cube","volume":"6","author":"Gaetz","year":"1998","journal-title":"Cogn. Brain Res."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB17","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1159\/000173573","article-title":"Risk prediction after myocardial infarction","volume":"70","author":"Gilpin","year":"1983","journal-title":"Cardiology"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB18","doi-asserted-by":"crossref","unstructured":"Goldman L, Weinberg M, Weisberg M, Olshen R, Cook EF, Sargent RK, Lamas GA, Dennis C, Wilson C, Deckelbaum L, Fineberg H, Striatelli R, the medical staff at Yale-New Haven Hospital and Brigham and Women\u2019s Hospital. A computer-derived protocol to aid in the diagnosis of emergency room patients with acute chest pain. N Engl J Med 1982;307(10):588\u201396.","DOI":"10.1056\/NEJM198209023071004"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB19","unstructured":"Hand DJ. Construction and assessment of classification rules. New York: Wiley, 1997."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB20","unstructured":"Haykin S. Neural networks: a comprehensive foundation. New York: Macmillan, 1994."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB21","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/S0933-3657(97)00388-6","article-title":"Artificial neural network analysis of noisy visual field data in glaucoma","volume":"10","author":"Henson","year":"1997","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB22","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1177\/0272989X9101100204","article-title":"The area under the ROC curve and its competitors","volume":"11","author":"Hilden","year":"1991","journal-title":"Med. Decis. Mak."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB23","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1001\/archinte.1992.00400140061014","article-title":"Identification of severe coronary artery disease using simple clinical parameters","volume":"152","author":"Hubbard","year":"1992","journal-title":"Arch. Internal Med."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB24","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1162\/neco.1991.3.1.79","article-title":"Adaptive mixtures of local experts","volume":"3","author":"Jacobs","year":"1991","journal-title":"Neural Comput."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB25","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1148\/radiology.198.3.8628853","article-title":"Malignant and benign clustered microcalcification: automated feature analysis and classification","volume":"198","author":"Jiang","year":"1996","journal-title":"Radiology"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB26","doi-asserted-by":"crossref","first-page":"764","DOI":"10.1136\/bmj.315.7111.763d","article-title":"Computers beat doctors in interpreting ECGs","volume":"315","author":"Josefson","year":"1997","journal-title":"Br. Med. J."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB27","doi-asserted-by":"crossref","unstructured":"Kohonen T. Self-organizing maps. New York: Springer, 1997.","DOI":"10.1007\/978-3-642-97966-8"},{"issue":"1","key":"10.1016\/S0933-3657(00)00063-4_BIB28","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1177\/0272989X9801800114","article-title":"Neural network assessment of perioperative cardiac risk in vascular surgery patients","volume":"18","author":"Lapuerta","year":"1998","journal-title":"Med. Decis. Mak."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB29","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/S0933-3657(97)00035-3","article-title":"Application of autonomous neural network systems to medical pattern classification tasks","volume":"11","author":"Lim","year":"1997","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB30","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/S0933-3657(97)00028-6","article-title":"Recognition of patient anesthetic levels: neural network systems, principal component analysis, and canonical discriminant variates","volume":"11","author":"Linkensand","year":"1997","journal-title":"Artif. Intell. Med."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB31","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/0304-3835(94)90091-4","article-title":"How to improve a neural network for early detection of hepatic cancer","volume":"77","author":"Maclin","year":"1994","journal-title":"Cancer Lett."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB32","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1002\/sim.4780070803","article-title":"Identifying prognostic factors in binary outcome data: an application using liver function tests and age to predict liver metastases","volume":"7","author":"Makuch","year":"1988","journal-title":"Statist. Med."},{"issue":"4","key":"10.1016\/S0933-3657(00)00063-4_BIB33","doi-asserted-by":"crossref","first-page":"570","DOI":"10.1287\/opre.43.4.570","article-title":"Breast cancer diagnosis and prognosis via linear programming","volume":"43","author":"Mangasarian","year":"1995","journal-title":"Operations Res."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB34","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/0304-3835(94)90098-1","article-title":"Computer-assisted cervical cancer screening using neural networks","volume":"77","author":"Mango","year":"1994","journal-title":"Cancer Lett."},{"issue":"4","key":"10.1016\/S0933-3657(00)00063-4_BIB35","doi-asserted-by":"crossref","first-page":"1114","DOI":"10.1016\/S0002-9378(96)70014-5","article-title":"Reducing false negatives in clinical practice: the role of neural network technology","volume":"175","author":"Mango","year":"1996","journal-title":"Am. J. Obstet. Gynecol."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB36","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/S0933-3657(98)00059-1","article-title":"A neural network approach to the diagnosis of morbidity outcomes in trauma care","volume":"15","author":"Marble","year":"1999","journal-title":"Artif. Intell. Med."},{"issue":"1","key":"10.1016\/S0933-3657(00)00063-4_BIB37","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1136\/jamia.1994.95236141","article-title":"Medical diagnostic decision support systems \u2014 past, present, and future: a threaded bibliography and brief commentary","volume":"1","author":"Miller","year":"1994","journal-title":"J. Am. Med. Informatics Assoc."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB38","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/S0925-2312(97)00090-8","article-title":"A general regression neural network analysis of prognostic markers in prostate cancer","volume":"19","author":"Naguib","year":"1998","journal-title":"Neurocomputing"},{"issue":"3","key":"10.1016\/S0933-3657(00)00063-4_BIB39","doi-asserted-by":"crossref","first-page":"598","DOI":"10.1093\/oxfordjournals.aje.a115007","article-title":"Prevalence of gallstone disease in a general population of Okinawa, Japan","volume":"128","author":"Nomura","year":"1988","journal-title":"Am. J. Epidemiol."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB40","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1162\/neco.1993.5.3.492","article-title":"A neural network that learns to interpret myocardial planar thallium scintigrams","volume":"5","author":"Rosenberg","year":"1993","journal-title":"Neural Comput."},{"issue":"5","key":"10.1016\/S0933-3657(00)00063-4_BIB41","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1016\/S0305-0548(96)00064-0","article-title":"Using neural networks to aid the diagnosis of breast implant rupture","volume":"24","author":"Salchenberger","year":"1997","journal-title":"Comput. Operations Res."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB42","doi-asserted-by":"crossref","first-page":"416","DOI":"10.1016\/0002-9343(93)90153-G","article-title":"Ulcer risk factors: interactions between heliocobacter pylori infection, nonsteroidal use and age","volume":"94","author":"Schubert","year":"1993","journal-title":"Am. J. Med."},{"issue":"1","key":"10.1016\/S0933-3657(00)00063-4_BIB43","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/S1386-5056(98)00169-5","article-title":"Predicting cytomegalovirus disease after renal transplantation: an artificial neural network approach","volume":"54","author":"Sheppard","year":"1999","journal-title":"Int. J. Med. Informatics"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB44","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1177\/0272989X9301300402","article-title":"A neural network approach to predicting admission decisions in a psychiatric emergency room","volume":"13","author":"Somoza","year":"1993","journal-title":"Med. Decis. Mak."},{"issue":"6","key":"10.1016\/S0933-3657(00)00063-4_BIB45","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/72.97934","article-title":"A general regression neural network","volume":"2","author":"Specht","year":"1991","journal-title":"Neural Networks"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB46","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1136\/jamia.1997.0040313","article-title":"Using computer-based medical records to predict mortality risk for inner-city patients with reactive airways disease","volume":"4","author":"Tierney","year":"1997","journal-title":"J. Med. Informatics Assoc."},{"issue":"2","key":"10.1016\/S0933-3657(00)00063-4_BIB47","doi-asserted-by":"crossref","first-page":"145","DOI":"10.2307\/2981918","article-title":"Comparison of discrimination techniques applied to a complex data set of head injured patients","volume":"144","author":"Titterington","year":"1981","journal-title":"J. R. Statist. Soc. A"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB48","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1148\/radiology.189.2.8210389","article-title":"Acute pulmonary embolism: artificial neural network approach for diagnosis","volume":"189","author":"Tourassi","year":"1993","journal-title":"Radiology"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB49","doi-asserted-by":"crossref","first-page":"891","DOI":"10.1016\/S0031-3203(98)00099-5","article-title":"Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network","volume":"32","author":"Tsujji","year":"1999","journal-title":"Pattern Recogn."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB50","doi-asserted-by":"crossref","unstructured":"Tu JV, Weinstein MC, McNeil BJ, Naylor CD, The Steering Committee of the Cardiac Care Network of Ontario. Predicting mortality after coronary artery bypass surgery: what do artificial neural networks learn? Med Decis Mak 1998;18(2):229\u201335.","DOI":"10.1177\/0272989X9801800212"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB51","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/0304-3835(94)90097-3","article-title":"Application of backpropagation neural networks to diagnosis of breast and ovarian cancer","volume":"77","author":"Wilding","year":"1994","journal-title":"Cancer Lett."},{"issue":"2","key":"10.1016\/S0933-3657(00)00063-4_BIB52","first-page":"77","article-title":"Image analysis and machine learning applied to breast cancer diagnosis and prognosis","volume":"17","author":"Wolberg","year":"1995","journal-title":"Anal. Quant. Cytol. Histol."},{"key":"10.1016\/S0933-3657(00)00063-4_BIB53","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1001\/archsurg.1995.01430050061010","article-title":"Computerized breast cancer diagnosis and prognosis from fine needle aspirates","volume":"130","author":"Wolberg","year":"1995","journal-title":"Arch. Surgery"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB54","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/S0893-6080(05)80023-1","article-title":"Stacked generalization","volume":"5","author":"Wolpert","year":"1992","journal-title":"Neural Networks"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB55","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1148\/radiology.187.1.8451441","article-title":"Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer","volume":"187","author":"Wu","year":"1993","journal-title":"Radiology"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB56","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/S0925-2312(99)00054-5","article-title":"Developing robust non-linear models through bootstrap aggregated neural networks","volume":"25","author":"Zhang","year":"1999","journal-title":"Neurocomputing"},{"key":"10.1016\/S0933-3657(00)00063-4_BIB57","doi-asserted-by":"crossref","first-page":"927","DOI":"10.1016\/S0893-6080(99)00037-4","article-title":"Inferential estimation of polymer quality using bootstrap aggregated neural networks","volume":"12","author":"Zhang","year":"1999","journal-title":"Neural Networks"},{"issue":"1","key":"10.1016\/S0933-3657(00)00063-4_BIB58","doi-asserted-by":"crossref","first-page":"1637","DOI":"10.1016\/S0031-3203(96)00182-3","article-title":"Improving classifier performance through repeated sampling","volume":"30","author":"Zhou","year":"1997","journal-title":"Pattern Recogn."}],"container-title":["Artificial Intelligence in Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365700000634?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0933365700000634?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,4,26]],"date-time":"2019-04-26T02:26:35Z","timestamp":1556245595000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0933365700000634"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2000,11]]},"references-count":58,"journal-issue":{"issue":"3","published-print":{"date-parts":[[2000,11]]}},"alternative-id":["S0933365700000634"],"URL":"https:\/\/doi.org\/10.1016\/s0933-3657(00)00063-4","relation":{},"ISSN":["0933-3657"],"issn-type":[{"value":"0933-3657","type":"print"}],"subject":[],"published":{"date-parts":[[2000,11]]}}}