{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,4,5]],"date-time":"2022-04-05T19:34:20Z","timestamp":1649187260493},"reference-count":17,"publisher":"Elsevier BV","issue":"4-5","license":[{"start":{"date-parts":[[1998,5,1]],"date-time":"1998-05-01T00:00:00Z","timestamp":893980800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Operations Research Letters"],"published-print":{"date-parts":[[1998,5]]},"DOI":"10.1016\/s0167-6377(98)00014-5","type":"journal-article","created":{"date-parts":[[2002,7,25]],"date-time":"2002-07-25T23:14:29Z","timestamp":1027638869000},"page":"145-150","source":"Crossref","is-referenced-by-count":5,"title":["On the long-step path-following method for semidefinite programming"],"prefix":"10.1016","volume":"22","author":[{"given":"Jos F.","family":"Sturm","sequence":"first","affiliation":[]},{"given":"Shuzhong","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/S0167-6377(98)00014-5_BIB1","unstructured":"F. Alizadeh, J.-P.A. Haeberley, M.L. Overton, Primal-dual interior point methods for semidefinite programming: convergence rates, stability and numerical results, Report 721, New York University Computer Science Department, New York, 1996."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB2","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1137\/0806020","article-title":"An interior point method for semidefinite programming","volume":"6","author":"Helmberg","year":"1996","journal-title":"SIAM J. Optim."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB3","doi-asserted-by":"crossref","unstructured":"M. Kojima, S. Mizuno, A. Yoshise, A primal-dual interior point algorithm for linear programming, in: N. Megiddo (Ed.), Progress in Mathematical Programming: Interior Point and Related Methods, Springer, New York, 1989, pp. 29\u201337.","DOI":"10.1007\/978-1-4613-9617-8_2"},{"key":"10.1016\/S0167-6377(98)00014-5_BIB4","series-title":"A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems","author":"Kojima","year":"1991"},{"issue":"1","key":"10.1016\/S0167-6377(98)00014-5_BIB5","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1137\/S1052623494269035","article-title":"Interior-point methods for the monotone linear complementarity problem in symmetric matrices,","volume":"7","author":"Kojima","year":"1997","journal-title":"SIAM J. Optim."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB6","unstructured":"M. Kojima, M. Shida, S. Shindoh, A predictor\u2013corrector interior-point algorithm for the semidefinite linear complementarity problem using the Alizadeh\u2013Haeberley\u2013Overton search direction, Research Reports on Information Sciences, B-311, Dept. of Information Sciences, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1996."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB7","unstructured":"M. Kojima, M. Shida, S. Shindoh, A note on the Nesterov\u2013Todd and the Kojima\u2013Shindoh\u2013Hara search directions in semidefinite programming, Research Reports on Information Sciences, B-313, Dept. of Information Sciences, Tokyo Institute of Technology, 2-12-1 Oh-Okayama, Meguro-ku, Tokyo 152, Japan, 1996."},{"issue":"4","key":"10.1016\/S0167-6377(98)00014-5_BIB8","doi-asserted-by":"crossref","first-page":"964","DOI":"10.1287\/moor.18.4.964","article-title":"On Adaptive-Step Primal-Dual Interior-Point Algorithms for Linear Programming","volume":"18","author":"Mizuno","year":"1993","journal-title":"Math. Oper. Res."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB9","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1137\/S1052623495293056","article-title":"Primal-dual path following algorithms for semidefinite programming","volume":"7","author":"Monteiro","year":"1997","journal-title":"SIAM J. Optim."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB10","unstructured":"R.D.C. Monteiro, Polynomial convergence of primal\u2013dual algorithms for semidefinite programming, based on Monteiro and Zhang family of search directions, Technical Report, School of Industrial and Systems Engineering, Georgia Tech, Atlanta, GA, USA, 1996."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB11","unstructured":"R.D.C. Monteiro, Y. Zhang, A unified analysis for a class of path-following primal-dual interior point algorithms for semidefinite programming, Working paper (first draft), June 1996."},{"issue":"1","key":"10.1016\/S0167-6377(98)00014-5_BIB12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1287\/moor.22.1.1","article-title":"Self-scaled barriers and interior-point methods for convex programming","volume":"22","author":"Nesterov","year":"1997","journal-title":"Math. Oper. Res."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB13","unstructured":"Y. Nesterov, M.J. Todd, Primal-dual interior-point methods for self-scaled cones, Technical Report 1125, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York, 1995, SIAM J. Optim., to appear."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB14","unstructured":"J.F. Sturm, S. Zhang, Symmetric primal-dual path following algorithms for semidefinite programming, Report 9554\/A, Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1995."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB15","unstructured":"J.F. Sturm, S. Zhang, On weighted centers for semidefinite programming, Report 9636\/A, Econometric Institute, Erasmus University Rotterdam, Rotterdam, The Netherlands, 1996."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB16","unstructured":"M.J. Todd, K.C. Toh, R.H. T\u00fct\u00fcnc\u00fc, On the Nesterov-Todd direction in semidefinite programming, Technical Report 1154, School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York, 1996."},{"key":"10.1016\/S0167-6377(98)00014-5_BIB17","unstructured":"Y. Zhang, On extending primal-dual interior-point algorithms from linear programming to semidefinite programming, Technical Report, Dept. of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, MD, USA, 1995."}],"container-title":["Operations Research Letters"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167637798000145?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167637798000145?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,4,18]],"date-time":"2019-04-18T08:54:25Z","timestamp":1555577665000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167637798000145"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[1998,5]]},"references-count":17,"journal-issue":{"issue":"4-5","published-print":{"date-parts":[[1998,5]]}},"alternative-id":["S0167637798000145"],"URL":"https:\/\/doi.org\/10.1016\/s0167-6377(98)00014-5","relation":{},"ISSN":["0167-6377"],"issn-type":[{"value":"0167-6377","type":"print"}],"subject":[],"published":{"date-parts":[[1998,5]]}}}