{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T22:58:56Z","timestamp":1740178736100,"version":"3.37.3"},"reference-count":47,"publisher":"Elsevier BV","issue":"2","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,4,3]],"date-time":"2022-04-03T00:00:00Z","timestamp":1648944000000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["CNS-1629914","DUE-1833129","IIS-1455886","IIS-1955395","IIS-2101696","OAC-2104158"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Visual Informatics"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.visinf.2022.04.004","type":"journal-article","created":{"date-parts":[[2022,4,14]],"date-time":"2022-04-14T15:33:26Z","timestamp":1649950406000},"page":"62-73","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"title":["VCNet: A generative model for volume completion"],"prefix":"10.1016","volume":"6","author":[{"given":"Jun","family":"Han","sequence":"first","affiliation":[]},{"given":"Chaoli","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.visinf.2022.04.004_b1","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1109\/MCG.2021.3097555","article-title":"STSRNet: Deep joint space-time super-resolution for vector field visualization","volume":"41","author":"An","year":"2021","journal-title":"IEEE Comput. Graph. Appl."},{"issue":"8","key":"10.1016\/j.visinf.2022.04.004_b2","doi-asserted-by":"crossref","first-page":"1200","DOI":"10.1109\/83.935036","article-title":"Filling-in by joint interpolation of vector fields and gray levels","volume":"10","author":"Ballester","year":"2001","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.visinf.2022.04.004_b3","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1145\/1531326.1531330","article-title":"PatchMatch: A randomized correspondence algorithm for structural image editing","volume":"28","author":"Barnes","year":"2009","journal-title":"ACM Trans. Graph."},{"issue":"4","key":"10.1016\/j.visinf.2022.04.004_b4","doi-asserted-by":"crossref","first-page":"1636","DOI":"10.1109\/TVCG.2018.2816059","article-title":"A generative model for volume rendering","volume":"25","author":"Berger","year":"2019","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"issue":"3","key":"10.1016\/j.visinf.2022.04.004_b5","doi-asserted-by":"crossref","first-page":"773","DOI":"10.1111\/j.1467-8659.2009.01689.x","article-title":"Isosurface similarity maps","volume":"29","author":"Bruckner","year":"2010","journal-title":"Comput. Graph. Forum"},{"issue":"2","key":"10.1016\/j.visinf.2022.04.004_b6","doi-asserted-by":"crossref","first-page":"1378","DOI":"10.1109\/TVCG.2018.2796085","article-title":"Deep-learning-assisted volume visualization","volume":"25","author":"Cheng","year":"2019","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.visinf.2022.04.004_b7","doi-asserted-by":"crossref","unstructured":"\u00c7i\u00e7ek,\u00a0\u00d6., Abdulkadir,\u00a0A., Lienkamp,\u00a0S.S., Brox,\u00a0T., Ronneberger,\u00a0O., 2016. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 424\u2013432.","DOI":"10.1007\/978-3-319-46723-8_49"},{"key":"10.1016\/j.visinf.2022.04.004_b8","doi-asserted-by":"crossref","unstructured":"Dai,\u00a0J., Qi,\u00a0H., Xiong,\u00a0Y., Li,\u00a0Y., Zhang,\u00a0G., Hu,\u00a0H., Wei,\u00a0Y., 2017. Deformable Convolutional Networks. In: Proceedings of IEEE International Conference on Computer Vision. pp. 764\u2013773.","DOI":"10.1109\/ICCV.2017.89"},{"key":"10.1016\/j.visinf.2022.04.004_b9","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1145\/882262.882267","article-title":"Fragment-based image completion","author":"Drori","year":"2003","journal-title":"ACM Trans. Graph."},{"issue":"2","key":"10.1016\/j.visinf.2022.04.004_b10","doi-asserted-by":"crossref","first-page":"1268","DOI":"10.1109\/TVCG.2020.3030344","article-title":"Deep volumetric ambient occlusion","volume":"27","author":"Engel","year":"2021","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.visinf.2022.04.004_b11","unstructured":"Goodfellow,\u00a0I., Pouget-Abadie,\u00a0J., Mirza,\u00a0M., Xu,\u00a0B., Warde-Farley,\u00a0D., Ozair,\u00a0S., Courville,\u00a0A., Bengio,\u00a0Y., 2014. Generative Adversarial Nets. In: Proceedings of Advances in Neural Information Processing Systems. pp. 2672\u20132680."},{"issue":"6","key":"10.1016\/j.visinf.2022.04.004_b12","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1109\/MCG.2021.3089627","article-title":"Reconstructing unsteady flow data from representative streamlines via diffusion and deep learning based denoising","volume":"41","author":"Gu","year":"2021","journal-title":"IEEE Comput. Graph. Appl."},{"key":"10.1016\/j.visinf.2022.04.004_b13","doi-asserted-by":"crossref","unstructured":"Gu,\u00a0P., Han,\u00a0J., Chen,\u00a0D.Z., Wang,\u00a0C., 2022. Scalar2Vec: Translating Scalar Fields to Vector Fields via Deep Learning. In: Proceedings of IEEE Pacific Visualization Symposium. (in press).","DOI":"10.1109\/PacificVis53943.2022.00012"},{"key":"10.1016\/j.visinf.2022.04.004_b14","doi-asserted-by":"crossref","unstructured":"Guo,\u00a0L., Ye,\u00a0S., Han,\u00a0J., Zheng,\u00a0H., Gao,\u00a0H., Chen,\u00a0D.Z., Wang,\u00a0J.-X., Wang,\u00a0C., 2020. SSR-VFD: Spatial Super-Resolution for Vector Field Data Analysis and Visualization. In: Proceedings of IEEE Pacific Visualization Symposium. pp. 71\u201380.","DOI":"10.1109\/PacificVis48177.2020.8737"},{"issue":"4","key":"10.1016\/j.visinf.2022.04.004_b15","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1109\/MCG.2018.2881523","article-title":"Flow field reduction via reconstructing vector data from 3D streamlines using deep learning","volume":"39","author":"Han","year":"2019","journal-title":"IEEE Comput. Graph. Appl."},{"issue":"6","key":"10.1016\/j.visinf.2022.04.004_b16","first-page":"2445","article-title":"SSR-TVD: Spatial super-resolution for time-varying data analysis and visualization","volume":"28","author":"Han","year":"2020","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"issue":"1","key":"10.1016\/j.visinf.2022.04.004_b17","first-page":"205","article-title":"TSR-TVD: Temporal super-resolution for time-varying data analysis and visualization","volume":"26","author":"Han","year":"2020","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.visinf.2022.04.004_b18","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.cag.2022.02.001","article-title":"TSR-VFD: Generating temporal super-resolution for unsteady vector field data","volume":"103","author":"Han","year":"2022","journal-title":"Comput. Graph."},{"issue":"1","key":"10.1016\/j.visinf.2022.04.004_b19","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1109\/TVCG.2021.3114815","article-title":"STNet: An end-to-end generative framework for synthesizing spatiotemporal super-resolution volumes","volume":"28","author":"Han","year":"2022","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"issue":"2","key":"10.1016\/j.visinf.2022.04.004_b20","doi-asserted-by":"crossref","first-page":"1290","DOI":"10.1109\/TVCG.2020.3030346","article-title":"V2V: A deep learning approach to variable-to-variable selection and translation for multivariate time-varying data","volume":"27","author":"Han","year":"2021","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"issue":"1","key":"10.1016\/j.visinf.2022.04.004_b21","first-page":"23","article-title":"InSituNet: Deep image synthesis for parameter space exploration of ensemble simulations","volume":"26","author":"He","year":"2020","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.visinf.2022.04.004_b22","doi-asserted-by":"crossref","unstructured":"He,\u00a0K., Zhang,\u00a0X., Ren,\u00a0S., Sun,\u00a0J., 2015. Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: Proceedings of IEEE International Conference on Computer Vision. pp. 1026\u20131034.","DOI":"10.1109\/ICCV.2015.123"},{"key":"10.1016\/j.visinf.2022.04.004_b23","doi-asserted-by":"crossref","unstructured":"He,\u00a0K., Zhang,\u00a0X., Ren,\u00a0S., Sun,\u00a0J., 2016. Deep Residual Learning for Image Recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.visinf.2022.04.004_b24","doi-asserted-by":"crossref","unstructured":"Hong,\u00a0F., Liu,\u00a0C., Yuan,\u00a0X., 2019. DNN-VolVis: Interactive Volume Visualization Supported by Deep Neural Network. In: Proceedings of IEEE Pacific Visualization Symposium. pp. 282\u2013291.","DOI":"10.1109\/PacificVis.2019.00041"},{"issue":"4","key":"10.1016\/j.visinf.2022.04.004_b25","first-page":"1","article-title":"Image completion using planar structure guidance","volume":"33","author":"Huang","year":"2014","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.visinf.2022.04.004_b26","doi-asserted-by":"crossref","unstructured":"Huang,\u00a0G., Liu,\u00a0Z., Van Der\u00a0Maaten,\u00a0L., Weinberger,\u00a0K.Q., 2017. Densely Connected Convolutional Networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 4700\u20134708.","DOI":"10.1109\/CVPR.2017.243"},{"issue":"4","key":"10.1016\/j.visinf.2022.04.004_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3072959.3073659","article-title":"Globally and locally consistent image completion","volume":"36","author":"Iizuka","year":"2017","journal-title":"ACM Trans. Graph."},{"key":"10.1016\/j.visinf.2022.04.004_b28","unstructured":"Kingma,\u00a0D., Ba,\u00a0J., 2015. Adam: A Method for Stochastic Optimization. In: Proceedings of International Conference on Learning Representations."},{"key":"10.1016\/j.visinf.2022.04.004_b29","doi-asserted-by":"crossref","unstructured":"Levin,\u00a0A., Zomet,\u00a0A., Weiss,\u00a0Y., 2003. Learning How to Inpaint from Global Image Statistics. In: Proceedings of IEEE International Conference on Computer Vision. pp. 305\u2013313.","DOI":"10.1109\/ICCV.2003.1238360"},{"key":"10.1016\/j.visinf.2022.04.004_b30","unstructured":"Li,\u00a0H., Xu,\u00a0Z., Taylor,\u00a0G., Studer,\u00a0C., Goldstein,\u00a0T., 2018. Visualizing the Loss Landscape of Neural Nets. In: Proceedings of Advances in Neural Information Processing Systems. pp. 6389\u20136399."},{"key":"10.1016\/j.visinf.2022.04.004_b31","doi-asserted-by":"crossref","unstructured":"Liang,\u00a0X., Di,\u00a0S., Tao,\u00a0D., Li,\u00a0S., Li,\u00a0S., Guo,\u00a0H., Chen,\u00a0Z., Cappello,\u00a0F., 2018. Error-controlled lossy compression optimized for high compression ratios of scientific datasets. In: Proceedings of IEEE International Conference on Big Data. pp. 438\u2013447.","DOI":"10.1109\/BigData.2018.8622520"},{"key":"10.1016\/j.visinf.2022.04.004_b32","unstructured":"Lin,\u00a0M., Chen,\u00a0Q., Yan,\u00a0S., 2014. Network in Network. In: Proceedings of International Conference on Learning Representations."},{"key":"10.1016\/j.visinf.2022.04.004_b33","doi-asserted-by":"crossref","unstructured":"Liu,\u00a0G., Reda,\u00a0F.A., Shih,\u00a0K.J., Wang,\u00a0T.-C., Tao,\u00a0A., Catanzaro,\u00a0B., 2018. Image inpainting for irregular holes using partial convolutions. In: Proceedings of European Conference on Computer Vision. pp. 85\u2013100.","DOI":"10.1007\/978-3-030-01252-6_6"},{"issue":"3","key":"10.1016\/j.visinf.2022.04.004_b34","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1111\/cgf.14295","article-title":"Compressive neural representations of volumetric scalar fields","volume":"40","author":"Lu","year":"2021","journal-title":"Comput. Graph. Forum"},{"key":"10.1016\/j.visinf.2022.04.004_b35","unstructured":"Nair,\u00a0V., Hinton,\u00a0G.E., 2010. Rectified Linear Units Improve Restricted Boltzmann Machines. In: Proceedings of International Conference on Machine Learning. pp. 807\u2013814."},{"key":"10.1016\/j.visinf.2022.04.004_b36","doi-asserted-by":"crossref","unstructured":"Pathak,\u00a0D., Krahenbuhl,\u00a0P., Donahue,\u00a0J., Darrell,\u00a0T., Efros,\u00a0A.A., 2016. Context encoders: Feature learning by inpainting. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. pp. 2536\u20132544.","DOI":"10.1109\/CVPR.2016.278"},{"key":"10.1016\/j.visinf.2022.04.004_b37","doi-asserted-by":"crossref","unstructured":"Porter,\u00a0W.P., Xing,\u00a0Y., von Ohlen,\u00a0B.R., Han,\u00a0J., Wang,\u00a0C., 2019. A Deep Learning Approach to Selecting Representative Time Steps for Time-Varying Multivariate Data. In: Proceedings of IEEE VIS Conference (Short Papers). pp. 131\u2013135.","DOI":"10.1109\/VISUAL.2019.8933759"},{"key":"10.1016\/j.visinf.2022.04.004_b38","doi-asserted-by":"crossref","unstructured":"Ronneberger,\u00a0O., Fischer,\u00a0P., Brox,\u00a0T., 2015. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 234\u2013241.","DOI":"10.1007\/978-3-319-24574-4_28"},{"issue":"7","key":"10.1016\/j.visinf.2022.04.004_b39","doi-asserted-by":"crossref","first-page":"3091","DOI":"10.1109\/TVCG.2019.2961893","article-title":"Local prediction models for spatiotemporal volume visualization","volume":"27","author":"Tkachev","year":"2021","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.visinf.2022.04.004_b40","article-title":"S4: Self-supervised learning of spatiotemporal similarity","author":"Tkachev","year":"2021","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.visinf.2022.04.004_b41","unstructured":"Wang,\u00a0Y., Tao,\u00a0X., Qi,\u00a0X., Shen,\u00a0X., Jia,\u00a0J., 2018a. Image inpainting via generative multi-column convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems. pp. 331\u2013340."},{"key":"10.1016\/j.visinf.2022.04.004_b42","doi-asserted-by":"crossref","unstructured":"Wang,\u00a0X., Yu,\u00a0K., Wu,\u00a0S., Gu,\u00a0J., Liu,\u00a0Y., Dong,\u00a0C., Qiao,\u00a0Y., Change\u00a0Loy,\u00a0C., 2018b. ESGAN: Enhanced Super-Resolution Generative Adversarial Networks. In: Proceedings of European Conference on Computer Vision Workshops.","DOI":"10.1007\/978-3-030-11021-5_5"},{"issue":"6","key":"10.1016\/j.visinf.2022.04.004_b43","doi-asserted-by":"crossref","first-page":"3064","DOI":"10.1109\/TVCG.2019.2956697","article-title":"Volumetric isosurface rendering with deep learning-based super-resolution","volume":"27","author":"Weiss","year":"2021","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.visinf.2022.04.004_b44","article-title":"Learning adaptive sampling and reconstruction for volume visualization","author":"Weiss","year":"2020","journal-title":"IEEE Trans. Vis. Comput. Graphics"},{"key":"10.1016\/j.visinf.2022.04.004_b45","unstructured":"Xu,\u00a0C., Prince,\u00a0J.L., 1997. Gradient Vector Flow: A New External Force for Snakes. In: Proceedings of IEEE International Conference on Computer Vision. pp. 66\u201371."},{"key":"10.1016\/j.visinf.2022.04.004_b46","unstructured":"Yu,\u00a0F., Koltun,\u00a0V., 2016. Multi-scale Context Aggregation by Dilated Convolutions. In: Proceedings of International Conference on Learning Representations."},{"key":"10.1016\/j.visinf.2022.04.004_b47","doi-asserted-by":"crossref","unstructured":"Yu,\u00a0J., Lin,\u00a0Z., Yang,\u00a0J., Shen,\u00a0X., Lu,\u00a0X., Huang,\u00a0T.S., 2019. Free-form Image Inpainting with Gated Convolution. In: Proceedings of IEEE International Conference on Computer Vision. pp. 4471\u20134480.","DOI":"10.1109\/ICCV.2019.00457"}],"container-title":["Visual Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2468502X22000213?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2468502X22000213?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,27]],"date-time":"2024-06-27T00:55:51Z","timestamp":1719449751000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2468502X22000213"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":47,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2022,6]]}},"alternative-id":["S2468502X22000213"],"URL":"https:\/\/doi.org\/10.1016\/j.visinf.2022.04.004","relation":{},"ISSN":["2468-502X"],"issn-type":[{"type":"print","value":"2468-502X"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"VCNet: A generative model for volume completion","name":"articletitle","label":"Article Title"},{"value":"Visual Informatics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.visinf.2022.04.004","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press.","name":"copyright","label":"Copyright"}]}}