{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T19:15:29Z","timestamp":1723144529797},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,3,1]],"date-time":"2018-03-01T00:00:00Z","timestamp":1519862400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,3,15]],"date-time":"2022-03-15T00:00:00Z","timestamp":1647302400000},"content-version":"vor","delay-in-days":1475,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Theoretical Computer Science"],"published-print":{"date-parts":[[2018,3]]},"DOI":"10.1016\/j.tcs.2017.11.021","type":"journal-article","created":{"date-parts":[[2017,12,2]],"date-time":"2017-12-02T03:00:45Z","timestamp":1512183645000},"page":"50-69","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":16,"special_numbering":"C","title":["Scale-free online learning"],"prefix":"10.1016","volume":"716","author":[{"given":"Francesco","family":"Orabona","sequence":"first","affiliation":[]},{"given":"D\u00e1vid","family":"P\u00e1l","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.tcs.2017.11.021_br0010","series-title":"Proceedings of 26th International Conference on Algorithmic Learning Theory","first-page":"287","article-title":"Scale-free algorithms for online linear optimization","author":"Orabona","year":"2015"},{"key":"10.1016\/j.tcs.2017.11.021_br0020","series-title":"Prediction, Learning, and Games","author":"Cesa-Bianchi","year":"2006"},{"key":"10.1016\/j.tcs.2017.11.021_br0030","author":"Rakhlin"},{"issue":"2","key":"10.1016\/j.tcs.2017.11.021_br0040","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1561\/2200000018","article-title":"Online learning and online convex optimization","volume":"4","author":"Shalev-Shwartz","year":"2011","journal-title":"Found. Trends Mach. Learn."},{"issue":"2","key":"10.1016\/j.tcs.2017.11.021_br0050","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1006\/inco.1994.1009","article-title":"The weighted majority algorithm","volume":"108","author":"Littlestone","year":"1994","journal-title":"Inform. and Comput."},{"key":"10.1016\/j.tcs.2017.11.021_br0060","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1006\/jcss.1997.1556","article-title":"A game of prediction with expert advice","volume":"56","author":"Vovk","year":"1998","journal-title":"J. Comput. System Sci."},{"issue":"1","key":"10.1016\/j.tcs.2017.11.021_br0070","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/jcss.1997.1504","article-title":"A decision-theoretic generalization of on-line learning and an application to boosting","volume":"55","author":"Freund","year":"1997","journal-title":"J. Comput. System Sci."},{"issue":"3","key":"10.1016\/j.tcs.2017.11.021_br0080","doi-asserted-by":"crossref","first-page":"427","DOI":"10.1145\/258128.258179","article-title":"How to use expert advice","volume":"44","author":"Cesa-Bianchi","year":"1997","journal-title":"J. ACM"},{"issue":"3","key":"10.1016\/j.tcs.2017.11.021_br0090","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/j.jcss.2004.10.016","article-title":"Efficient algorithms for online decision problems","volume":"71","author":"Kalai","year":"2005","journal-title":"J. Comput. System Sci."},{"key":"10.1016\/j.tcs.2017.11.021_br0100","first-page":"1705","article-title":"Learning permutations with exponential weights","volume":"10","author":"Helmbold","year":"2009","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.tcs.2017.11.021_br0110","series-title":"Proceedings of the 23rd Annual Conference on Computational Learning Theory","first-page":"93","article-title":"Hedging structured concepts","author":"Koolen","year":"2010"},{"key":"10.1016\/j.tcs.2017.11.021_br0120","series-title":"Proceedings of the 21st Annual Conference on Learning Theory","first-page":"415","article-title":"Optimal strategies and minimax lower bounds for online convex games","author":"Abernethy","year":"2008"},{"issue":"6","key":"10.1016\/j.tcs.2017.11.021_br0130","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1037\/h0042519","article-title":"The perceptron: a probabilistic model for information storage and organization in the brain","volume":"65","author":"Rosenblatt","year":"1958","journal-title":"Psychol. Rev."},{"issue":"3","key":"10.1016\/j.tcs.2017.11.021_br0140","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1023\/A:1007662407062","article-title":"Large margin classification using the perceptron algorithm","volume":"37","author":"Freund","year":"1999","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.tcs.2017.11.021_br0150","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1006\/inco.1996.2612","article-title":"Exponentiated gradient versus gradient descent for linear predictors","volume":"132","author":"Kivinen","year":"1997","journal-title":"Inform. and Comput."},{"key":"10.1016\/j.tcs.2017.11.021_br0160","series-title":"Proceedings of the 21st Annual Conference on Learning Theory","first-page":"263","article-title":"Competing in the dark: an efficient algorithm for bandit linear optimization","author":"Abernethy","year":"2008"},{"issue":"1","key":"10.1016\/j.tcs.2017.11.021_br0170","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000024","article-title":"Regret analysis of stochastic and nonstochastic multi-armed bandit problems","volume":"5","author":"Bubeck","year":"2012","journal-title":"Found. Trends Mach. Learn."},{"key":"10.1016\/j.tcs.2017.11.021_br0180","series-title":"Problem Complexity and Method Efficiency in Optimization","author":"Nemirovski","year":"1983"},{"issue":"3\u20134","key":"10.1016\/j.tcs.2017.11.021_br0190","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1561\/2200000050","article-title":"Convex optimization: algorithms and complexity","volume":"8","author":"Bubeck","year":"2015","journal-title":"Found. Trends Mach. Learn."},{"key":"10.1016\/j.tcs.2017.11.021_br0200","series-title":"Proceedings of 20th International Conference On Machine Learning","first-page":"928","article-title":"Online convex programming and generalized infinitesimal gradient ascent","author":"Zinkevich","year":"2003"},{"key":"10.1016\/j.tcs.2017.11.021_br0210","first-page":"2543","article-title":"Dual averaging methods for regularized stochastic learning and online optimization","volume":"11","author":"Xiao","year":"2010","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.tcs.2017.11.021_br0220","series-title":"Proceedings of the 23rd Annual Conference on Computational Learning Theory","first-page":"244","article-title":"Adaptive bound optimization for online convex optimization","author":"McMahan","year":"2010"},{"key":"10.1016\/j.tcs.2017.11.021_br0230","author":"McMahan"},{"key":"10.1016\/j.tcs.2017.11.021_br0240","first-page":"2121","article-title":"Adaptive subgradient methods for online learning and stochastic optimization","volume":"12","author":"Duchi","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.tcs.2017.11.021_br0250","first-page":"1281","article-title":"Follow the leader if you can, hedge if you must","volume":"15","author":"de Rooij","year":"2014","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.tcs.2017.11.021_br0260","series-title":"Proceedings of The Twenty-Ninth Conference on Uncertainty in Artificial Intelligence","first-page":"537","article-title":"Normalized online learning","author":"Ross","year":"2013"},{"key":"10.1016\/j.tcs.2017.11.021_br0270","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1007\/s10994-014-5474-8","article-title":"A generalized online mirror descent with applications to classification and regression","volume":"99","author":"Orabona","year":"2014","journal-title":"Mach. Learn."},{"key":"10.1016\/j.tcs.2017.11.021_br0280","series-title":"Online Learning: Theory, Algorithms, and Applications","author":"Shalev-Shwartz","year":"2007"},{"issue":"1","key":"10.1016\/j.tcs.2017.11.021_br0290","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1007\/s10107-007-0149-x","article-title":"Primal-dual subgradient methods for convex problems","volume":"120","author":"Nesterov","year":"2009","journal-title":"Math. Program."},{"issue":"3","key":"10.1016\/j.tcs.2017.11.021_br0300","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/S0167-6377(02)00231-6","article-title":"Mirror descent and nonlinear projected subgradient methods for convex optimization","volume":"31","author":"Beck","year":"2003","journal-title":"Oper. Res. Lett."},{"key":"10.1016\/j.tcs.2017.11.021_br0310","series-title":"Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining","first-page":"1222","article-title":"Ad click prediction: a view from the trenches","author":"McMahan","year":"2013"},{"key":"10.1016\/j.tcs.2017.11.021_br0320","series-title":"Proceedings of the 23rd Annual Conference on Computational Learning Theory","first-page":"14","article-title":"Composite objective mirror descent","author":"Duchi","year":"2010"},{"key":"10.1016\/j.tcs.2017.11.021_br0330","author":"Streeter"},{"issue":"1","key":"10.1016\/j.tcs.2017.11.021_br0340","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1006\/jcss.2001.1795","article-title":"Adaptive and self-confident on-line learning algorithms","volume":"64","author":"Auer","year":"2002","journal-title":"J. Comput. System Sci."},{"key":"10.1016\/j.tcs.2017.11.021_br0350","first-page":"1563","article-title":"Near-optimal regret bounds for reinforcement learning","volume":"11","author":"Jaksch","year":"2010","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.tcs.2017.11.021_br0360","series-title":"Advances in Neural Information Processing Systems 26","first-page":"3066","article-title":"Optimization, learning, and games with predictable sequences","author":"Rakhlin","year":"2013"},{"key":"10.1016\/j.tcs.2017.11.021_br0370","author":"Kwon"},{"key":"10.1016\/j.tcs.2017.11.021_br0380","series-title":"Advances in Neural Information Processing Systems 24","first-page":"2645","article-title":"On the universality of online mirror descent","author":"Srebro","year":"2011"},{"key":"10.1016\/j.tcs.2017.11.021_br0390","series-title":"Advances in Neural Information Processing Systems 25","first-page":"2402","article-title":"No-regret algorithms for unconstrained online convex optimization","author":"Mcmahan","year":"2012"},{"key":"10.1016\/j.tcs.2017.11.021_br0400","series-title":"Advances in Neural Information Processing Systems 26","first-page":"2724","article-title":"Minimax optimal algorithms for unconstrained linear optimization","author":"McMahan","year":"2013"},{"key":"10.1016\/j.tcs.2017.11.021_br0410","series-title":"Advances in Neural Information Processing Systems 26","first-page":"1806","article-title":"Dimension-free exponentiated gradient","author":"Orabona","year":"2013"},{"key":"10.1016\/j.tcs.2017.11.021_br0420","series-title":"Proceedings of The 27th Conference on Learning Theory","first-page":"1020","article-title":"Unconstrained online linear learning in Hilbert spaces: minimax algorithms and normal approximations","volume":"vol. 35","author":"McMahan","year":"2014"},{"key":"10.1016\/j.tcs.2017.11.021_br0430","series-title":"Advances in Neural Information Processing Systems 27","first-page":"1116","article-title":"Simultaneous model selection and optimization through parameter-free stochastic learning","author":"Orabona","year":"2014"},{"key":"10.1016\/j.tcs.2017.11.021_br0440","series-title":"Advances in Neural Information Processing Systems 29","first-page":"577","article-title":"Coin betting and parameter-free online learning","author":"Orabona","year":"2016"},{"key":"10.1016\/j.tcs.2017.11.021_br0450","series-title":"Advances in Neural Information Processing Systems 29","first-page":"748","article-title":"Online convex optimization with unconstrained domains and losses","author":"Cutkosky","year":"2016"}],"container-title":["Theoretical Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0304397517308514?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0304397517308514?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,3,15]],"date-time":"2022-03-15T06:36:05Z","timestamp":1647326165000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0304397517308514"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3]]},"references-count":45,"alternative-id":["S0304397517308514"],"URL":"https:\/\/doi.org\/10.1016\/j.tcs.2017.11.021","relation":{},"ISSN":["0304-3975"],"issn-type":[{"value":"0304-3975","type":"print"}],"subject":[],"published":{"date-parts":[[2018,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Scale-free online learning","name":"articletitle","label":"Article Title"},{"value":"Theoretical Computer Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.tcs.2017.11.021","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V.","name":"copyright","label":"Copyright"}]}}