{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T23:04:28Z","timestamp":1744326268534},"reference-count":34,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Journal of Systems Architecture"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1016\/j.sysarc.2022.102461","type":"journal-article","created":{"date-parts":[[2022,3,23]],"date-time":"2022-03-23T17:05:41Z","timestamp":1648055141000},"page":"102461","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Joint compressing and partitioning of CNNs for fast edge-cloud collaborative intelligence for IoT"],"prefix":"10.1016","volume":"125","author":[{"given":"Wanpeng","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Nuo","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Liying","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7421-1711","authenticated-orcid":false,"given":"Tongquan","family":"Wei","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.sysarc.2022.102461_b1","doi-asserted-by":"crossref","first-page":"4216","DOI":"10.1109\/TII.2019.2897001","article-title":"MASM: A multiple-algorithm service model for energy-delay optimization in edge artificial intelligence","volume":"15","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.sysarc.2022.102461_b2","doi-asserted-by":"crossref","unstructured":"A. Dubey, M. Chatterjee, N. Ahuja, Coreset-based neural network compression, in: Proceedings of the European Conference on Computer Vision, ECCV, 2019, pp. 469\u2013486.","DOI":"10.1007\/978-3-030-01234-2_28"},{"key":"10.1016\/j.sysarc.2022.102461_b3","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014"},{"key":"10.1016\/j.sysarc.2022.102461_b4","doi-asserted-by":"crossref","unstructured":"J.-H. Luo, J. Wu, W. Lin, Thinet: A filter level pruning method for deep neural network compression, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 5058\u20135066.","DOI":"10.1109\/ICCV.2017.541"},{"issue":"9","key":"10.1016\/j.sysarc.2022.102461_b5","doi-asserted-by":"crossref","first-page":"6013","DOI":"10.1109\/TII.2019.2953106","article-title":"Model compression for IoT applications in industry 4.0 via multi-scale knowledge transfer","volume":"16","author":"Fu","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"7","key":"10.1016\/j.sysarc.2022.102461_b6","doi-asserted-by":"crossref","first-page":"4235","DOI":"10.1109\/TII.2019.2902878","article-title":"Artificial intelligence-driven mechanism for edge computing-based industrial applications","volume":"15","author":"Sodhro","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"7","key":"10.1016\/j.sysarc.2022.102461_b7","doi-asserted-by":"crossref","first-page":"4206","DOI":"10.1109\/TII.2019.2912465","article-title":"Fog-embedded deep learning for the internet of things","volume":"15","author":"Lyu","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.sysarc.2022.102461_b8","doi-asserted-by":"crossref","unstructured":"T. Wang, H. Luo, W. Jia, A. Liu, M. Xie, MTES: An intelligent trust evaluation scheme in sensor-cloud-enabled industrial internet of things, IEEE Trans. Ind. Inf. 16 (3) 2054\u20132062.","DOI":"10.1109\/TII.2019.2930286"},{"key":"10.1016\/j.sysarc.2022.102461_b9","doi-asserted-by":"crossref","unstructured":"R. LiKamWa, Z. Wang, A. Carroll, F.X. Lin, L. Zhong, Draining our glass: an energy and heat characterization of google glass, in: Proceedings of 5th Asia-Pacific Workshop on Systems, 2014, pp. 1\u20137.","DOI":"10.1145\/2637166.2637230"},{"issue":"1","key":"10.1016\/j.sysarc.2022.102461_b10","doi-asserted-by":"crossref","first-page":"615","DOI":"10.1145\/3093337.3037698","article-title":"Neurosurgeon: collaborative intelligence between the cloud and mobile edge","volume":"45","author":"Kang","year":"2017","journal-title":"ACM SIGARCH Comput. Archit. News"},{"issue":"8","key":"10.1016\/j.sysarc.2022.102461_b11","doi-asserted-by":"crossref","first-page":"1738","DOI":"10.1109\/JPROC.2019.2918951","article-title":"Edge intelligence: Paving the last mile of artificial intelligence with edge computing","volume":"107","author":"Zhou","year":"2019","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.sysarc.2022.102461_b12","doi-asserted-by":"crossref","DOI":"10.1016\/j.sysarc.2020.101775","article-title":"Optimized co-scheduling of mixed-precision neural network accelerator for real-time multitasking applications","volume":"110","author":"Jiang","year":"2020","journal-title":"J. Syst. Archit."},{"issue":"8","key":"10.1016\/j.sysarc.2022.102461_b13","doi-asserted-by":"crossref","first-page":"1413","DOI":"10.1109\/TCAD.2018.2846652","article-title":"Energy-aware design of stochastic applications with statistical deadline and reliability guarantees","volume":"38","author":"Jiang","year":"2018","journal-title":"IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst."},{"key":"10.1016\/j.sysarc.2022.102461_b14","unstructured":"L. Zhou, H. Wen, R. Teodorescu, D.H. Du, Distributing deep neural networks with containerized partitions at the edge, in: 2nd {USENIX} Workshop on Hot Topics in Edge Computing, HotEdge 19, 2019."},{"key":"10.1016\/j.sysarc.2022.102461_b15","series-title":"Soft weight-sharing for neural network compression","author":"Ullrich","year":"2017"},{"key":"10.1016\/j.sysarc.2022.102461_b16","doi-asserted-by":"crossref","unstructured":"S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, D. Doermann, Towards optimal structured CNN pruning via generative adversarial learning, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 2790\u20132799.","DOI":"10.1109\/CVPR.2019.00290"},{"key":"10.1016\/j.sysarc.2022.102461_b17","doi-asserted-by":"crossref","unstructured":"F. Mamalet, C. Garcia, Simplifying convnets for fast learning, in: International Conference on Artificial Neural Networks, 2012, pp. 58\u201365.","DOI":"10.1007\/978-3-642-33266-1_8"},{"key":"10.1016\/j.sysarc.2022.102461_b18","doi-asserted-by":"crossref","unstructured":"M. Hosseini, M. Horton, H. Paneliya, U. Kallakuri, H. Homayoun, T. Mohsenin, On the complexity reduction of dense layers from O(N2) to O(NlogN) with cyclic sparsely connected layers, in: 2019 56th ACM\/IEEE Design Automation Conference, DAC, 2019, pp. 1\u20136.","DOI":"10.1145\/3316781.3317873"},{"key":"10.1016\/j.sysarc.2022.102461_b19","doi-asserted-by":"crossref","unstructured":"Y. Wang, S. Liang, H. Li, X. Li, A none-sparse inference accelerator that distills and reuses the computation redundancy in CNNs, in: Proceedings of the 56th Annual Design Automation Conference 2019, 2019, pp. 1\u20136.","DOI":"10.1145\/3316781.3317749"},{"key":"10.1016\/j.sysarc.2022.102461_b20","series-title":"Neurosurgeon: collaborative intelligence between the cloud and mobile edge","author":"Iandola","year":"2016"},{"key":"10.1016\/j.sysarc.2022.102461_b21","doi-asserted-by":"crossref","unstructured":"M. Sotoudeh, S.S. Baghsorkhi, C3-Flow: Compute compression co-design flow for deep neural networks, in: Proceedings of the 56th Annual Design Automation Conference 2019, 2019, pp. 1\u20136.","DOI":"10.1145\/3316781.3317786"},{"issue":"12","key":"10.1016\/j.sysarc.2022.102461_b22","doi-asserted-by":"crossref","first-page":"2889","DOI":"10.1109\/TPAMI.2018.2873305","article-title":"Holistic cnn compression via low-rank decomposition with knowledge transfer","volume":"41","author":"Lin","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.sysarc.2022.102461_b23","series-title":"Learning low-rank approximation for CNNs","author":"Lee","year":"2019"},{"key":"10.1016\/j.sysarc.2022.102461_b24","doi-asserted-by":"crossref","unstructured":"Y. Matsubara, M. Levorato, Neural compression and filtering for edge-assisted real-time object detection in challenged networks, in: International Conference on Pattern Recognition, ICPR, 2021, pp. 2272\u20132279.","DOI":"10.1109\/ICPR48806.2021.9412388"},{"key":"10.1016\/j.sysarc.2022.102461_b25","unstructured":"J.H. Ko, T. Na, M.F. Amir, S. Mukhopadhyay, Edge-host partitioning of deep neural networks with feature space encoding for resource-constrained internet-of-things platforms, in: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2018, pp. 1\u20136."},{"key":"10.1016\/j.sysarc.2022.102461_b26","doi-asserted-by":"crossref","unstructured":"N.D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, F. Kawsar, Accelerating embedded deep learning using DeepX: demonstration abstract, in: Proceedings of the 15th International Conference on Information Processing in Sensor Networks, 2016, pp. 1\u20132.","DOI":"10.1109\/IPSN.2016.7460666"},{"key":"10.1016\/j.sysarc.2022.102461_b27","doi-asserted-by":"crossref","unstructured":"J. Mao, X. Chen, K.W. Nixon, C. Krieger, Y. Chen, Modnn: Local distributed mobile computing system for deep neural network, in: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, 2017, pp. 1396\u20131401.","DOI":"10.23919\/DATE.2017.7927211"},{"key":"10.1016\/j.sysarc.2022.102461_b28","doi-asserted-by":"crossref","unstructured":"C. Hu, W. Bao, D. Wang, F. Liu, Dynamic adaptive DNN surgery for inference acceleration on the edge, in: IEEE INFOCOM 2019-IEEE Conference on Computer Communications, 2019, pp. 1423\u20131431.","DOI":"10.1109\/INFOCOM.2019.8737614"},{"key":"10.1016\/j.sysarc.2022.102461_b29","doi-asserted-by":"crossref","unstructured":"F. Sun, C. Wang, L. Gong, C. Xu, Y. Zhang, Y. Lu, X. Li, X. Zhou, A high-performance accelerator for large-scale convolutional neural networks, in: 2017 IEEE International Symposium on Parallel and Distributed Processing with Applications and 2017 IEEE International Conference on Ubiquitous Computing and Communications, ISPA\/IUCC, 2017, pp. 622\u2013629.","DOI":"10.1109\/ISPA\/IUCC.2017.00099"},{"issue":"7","key":"10.1016\/j.sysarc.2022.102461_b30","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1109\/TCAD.2015.2409272","article-title":"Model reduction and simulation of nonlinear circuits via tensor decomposition","volume":"34","author":"Liu","year":"2015","journal-title":"IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst."},{"key":"10.1016\/j.sysarc.2022.102461_b31","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.neucom.2020.02.035","article-title":"Sparse low rank factorization for deep neural network compression","volume":"398","author":"Swaminathan","year":"2020","journal-title":"Neurocomputing"},{"issue":"9","key":"10.1016\/j.sysarc.2022.102461_b32","doi-asserted-by":"crossref","first-page":"5769","DOI":"10.1109\/TII.2019.2956078","article-title":"Powder-bed fusion process monitoring by machine vision with hybrid convolutional neural networks","volume":"16","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.sysarc.2022.102461_b33","unstructured":"ImageNet. http:\/\/www.image-net.org\/."},{"key":"10.1016\/j.sysarc.2022.102461_b34","doi-asserted-by":"crossref","unstructured":"Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding, in: Proceedings of the 22nd ACM International Conference on Multimedia, 2014, pp. 675\u2013678.","DOI":"10.1145\/2647868.2654889"}],"container-title":["Journal of Systems Architecture"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1383762122000510?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1383762122000510?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T19:41:02Z","timestamp":1680378062000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1383762122000510"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":34,"alternative-id":["S1383762122000510"],"URL":"https:\/\/doi.org\/10.1016\/j.sysarc.2022.102461","relation":{},"ISSN":["1383-7621"],"issn-type":[{"value":"1383-7621","type":"print"}],"subject":[],"published":{"date-parts":[[2022,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Joint compressing and partitioning of CNNs for fast edge-cloud collaborative intelligence for IoT","name":"articletitle","label":"Article Title"},{"value":"Journal of Systems Architecture","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.sysarc.2022.102461","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102461"}}