{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T13:43:42Z","timestamp":1742391822903,"version":"3.30.0"},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Swarm and Evolutionary Computation"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.swevo.2024.101729","type":"journal-article","created":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T18:06:14Z","timestamp":1726509974000},"page":"101729","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A dimensionality reduction assisted evolutionary algorithm for high-dimensional expensive multi\/many-objective optimization"],"prefix":"10.1016","volume":"91","author":[{"given":"Zeyuan","family":"Yan","sequence":"first","affiliation":[]},{"given":"Yuren","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Zheng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8550-917X","authenticated-orcid":false,"given":"Chupeng","family":"Su","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4714-7021","authenticated-orcid":false,"given":"Weigang","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.swevo.2024.101729_b1","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1109\/MCI.2006.1597059","article-title":"Evolutionary multi-objective optimization: a historical view of the field","volume":"1","author":"Coello Coello","year":"2006","journal-title":"IEEE Comput. Intell. Mag."},{"issue":"1","key":"10.1016\/j.swevo.2024.101729_b2","doi-asserted-by":"crossref","DOI":"10.1007\/s40747-019-00126-2","article-title":"A repository of real-world datasets for data-driven evolutionary multiobjective optimization","author":"He","year":"2020","journal-title":"Complex Intell. Syst."},{"issue":"4","key":"10.1016\/j.swevo.2024.101729_b3","doi-asserted-by":"crossref","DOI":"10.3390\/ijtpp4040035","article-title":"Metamodel-assisted multidisciplinary design optimization of a radial compressor","volume":"4","author":"Aissa","year":"2019","journal-title":"Int. J. Turbomach. Propuls. Power"},{"issue":"2","key":"10.1016\/j.swevo.2024.101729_b4","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.swevo.2011.05.001","article-title":"Surrogate-assisted evolutionary computation: Recent advances and future challenges","volume":"1","author":"Jin","year":"2011","journal-title":"Swarm Evol. Comput."},{"issue":"5","key":"10.1016\/j.swevo.2024.101729_b5","doi-asserted-by":"crossref","first-page":"1092","DOI":"10.1109\/JAS.2024.124320","article-title":"Evolutionary optimization methods for high-dimensional expensive problems: A survey","volume":"11","author":"Zhou","year":"2024","journal-title":"IEEE\/CAA J. Autom. Sin."},{"issue":"1","key":"10.1016\/j.swevo.2024.101729_b6","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/TEVC.2005.851274","article-title":"ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems","volume":"10","author":"Knowles","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.swevo.2024.101729_b7","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1109\/TCYB.2021.3126341","article-title":"Choose appropriate subproblems for collaborative modeling in expensive multiobjective optimization","volume":"53","author":"Wang","year":"2023","journal-title":"IEEE Trans. Cybern."},{"issue":"3","key":"10.1016\/j.swevo.2024.101729_b8","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1109\/TEVC.2009.2033671","article-title":"Expensive multiobjective optimization by MOEA\/D with Gaussian process model","volume":"14","author":"Zhang","year":"2010","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.swevo.2024.101729_b9","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1109\/TEVC.2021.3066606","article-title":"Multiple penalties and multiple local surrogates for expensive constrained optimization","volume":"25","author":"Li","year":"2021","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"6","key":"10.1016\/j.swevo.2024.101729_b10","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1109\/TEVC.2021.3073648","article-title":"A kriging-assisted two-archive evolutionary algorithm for expensive many-objective optimization","volume":"25","author":"Song","year":"2021","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.swevo.2024.101729_b11","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1109\/TEVC.2016.2622301","article-title":"A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization","volume":"22","author":"Chugh","year":"2018","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.swevo.2024.101729_b12","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1109\/TEVC.2022.3168836","article-title":"Offline and online objective reduction via Gaussian mixture model clustering","volume":"27","author":"Li","year":"2023","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2024.101729_b13","series-title":"Proceedings of the Fifth Annual Workshop on Computational Learning Theory","first-page":"144","article-title":"A training algorithm for optimal margin classifiers","author":"Boser","year":"1992"},{"issue":"1","key":"10.1016\/j.swevo.2024.101729_b14","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/TIT.1967.1053964","article-title":"Nearest neighbor pattern classification","volume":"13","author":"Cover","year":"1967","journal-title":"IEEE Trans. Inform. Theory"},{"issue":"6","key":"10.1016\/j.swevo.2024.101729_b15","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1016\/0925-2312(92)90018-K","article-title":"Introduction to artificial neural systems","volume":"4","author":"Nelson","year":"1992","journal-title":"Neurocomputing"},{"year":"1951","series-title":"A statistical approach to some mine valuation and allied problems on the Witwatersrand: By DG Krige","author":"Krige","key":"10.1016\/j.swevo.2024.101729_b16"},{"issue":"2","key":"10.1016\/j.swevo.2024.101729_b17","doi-asserted-by":"crossref","first-page":"536","DOI":"10.1109\/TCYB.2018.2869674","article-title":"A random forest-assisted evolutionary algorithm for data-driven constrained multiobjective combinatorial optimization of trauma systems","volume":"50","author":"Wang","year":"2020","journal-title":"IEEE Trans. Cybern."},{"year":"1988","series-title":"Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks","author":"Broomhead","key":"10.1016\/j.swevo.2024.101729_b18"},{"key":"10.1016\/j.swevo.2024.101729_b19","series-title":"2023 IEEE Congress on Evolutionary Computation","first-page":"1","article-title":"The combination of MOEA\/D and WOF for solving high-dimensional expensive multiobjective optimization problems","author":"Shui","year":"2023"},{"issue":"7","key":"10.1016\/j.swevo.2024.101729_b20","doi-asserted-by":"crossref","first-page":"4671","DOI":"10.1109\/TSMC.2021.3102298","article-title":"Surrogate-assisted multipopulation particle swarm optimizer for high-dimensional expensive optimization","volume":"52","author":"Liu","year":"2022","journal-title":"IEEE Trans. Syst. Man Cybern Syst."},{"issue":"2","key":"10.1016\/j.swevo.2024.101729_b21","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1109\/TEVC.2013.2248012","article-title":"A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems","volume":"18","author":"Liu","year":"2014","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"10.1016\/j.swevo.2024.101729_b22","doi-asserted-by":"crossref","first-page":"1012","DOI":"10.1109\/TCYB.2018.2794503","article-title":"Heterogeneous ensemble-based infill criterion for evolutionary multiobjective optimization of expensive problems","volume":"49","author":"Guo","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.swevo.2024.101729_b23","first-page":"1","article-title":"Multiple classifiers-assisted evolutionary algorithm based on decomposition for high-dimensional multi-objective problems","author":"Sonoda","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.swevo.2024.101729_b24","doi-asserted-by":"crossref","first-page":"2084","DOI":"10.1109\/TSMC.2020.3044418","article-title":"Evolutionary optimization of high-dimensional multiobjective and many-objective expensive problems assisted by a dropout neural network","volume":"52","author":"Guo","year":"2022","journal-title":"IEEE Trans. Syst. Man Cybern Syst."},{"issue":"6","key":"10.1016\/j.swevo.2024.101729_b25","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1109\/TEVC.2019.2899030","article-title":"A multiple surrogate assisted decomposition-based evolutionary algorithm for expensive multi\/many-objective optimization","volume":"23","author":"Habib","year":"2019","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"5","key":"10.1016\/j.swevo.2024.101729_b26","doi-asserted-by":"crossref","first-page":"2758","DOI":"10.1109\/TSMC.2022.3219080","article-title":"Expensive optimization via surrogate-assisted and model-free evolutionary optimization","volume":"53","author":"Li","year":"2023","journal-title":"IEEE Trans. Syst. Man Cybern Syst."},{"issue":"5","key":"10.1016\/j.swevo.2024.101729_b27","doi-asserted-by":"crossref","first-page":"1157","DOI":"10.1109\/TEVC.2022.3152582","article-title":"Expensive multiobjective optimization by relation learning and prediction","volume":"26","author":"Hao","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2024.101729_b28","first-page":"825","article-title":"Scalable test problems for evolutionary multiobjective optimization","volume":"1","author":"Deb","year":"2002","journal-title":"CEC \u201902. Proc. 2002 Congr."},{"issue":"6","key":"10.1016\/j.swevo.2024.101729_b29","doi-asserted-by":"crossref","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","article-title":"MOEA\/D: a multiobjective evolutionary algorithm based on decomposition","volume":"11","author":"Zhang","year":"2007","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.swevo.2024.101729_b30","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1109\/TEVC.2021.3103936","article-title":"An ensemble surrogate-based framework for expensive multiobjective evolutionary optimization","volume":"26","author":"Lin","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2024.101729_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.petrol.2020.107192","article-title":"A surrogate-assisted multi-objective evolutionary algorithm with dimension-reduction for production optimization","volume":"192","author":"Zhao","year":"2020","journal-title":"J. Pet. Sci. Eng."},{"key":"10.1016\/j.swevo.2024.101729_b32","series-title":"Complex & Intelligent Systems","first-page":"271","article-title":"Adaptive dropout for high-dimensional expensive multiobjective optimization","author":"Li","year":"2021"},{"key":"10.1016\/j.swevo.2024.101729_b33","series-title":"2023 62nd Annual Conference of the Society of Instrument and Control Engineers","first-page":"1535","article-title":"High-dimensional expensive optimization by classification-based multiobjective evolutionary algorithm with dimensionality reduction","author":"Horaguchi","year":"2023"},{"key":"10.1016\/j.swevo.2024.101729_b34","series-title":"2020 IEEE International Conference on Systems, Man, and Cybernetics","first-page":"2506","article-title":"Towards solving large-scale expensive optimization problems efficiently using coordinate descent algorithm","author":"Rahnamayan","year":"2020"},{"key":"10.1016\/j.swevo.2024.101729_b35","series-title":"Chapman & Hall\/CRC Monographs on Statistics & Applied Probability","article-title":"Multidimensional scaling, second edition","author":"Cox","year":"2000"},{"issue":"5500","key":"10.1016\/j.swevo.2024.101729_b36","doi-asserted-by":"crossref","first-page":"2319","DOI":"10.1126\/science.290.5500.2319","article-title":"A global geometric framework for nonlinear dimensionality reduction","volume":"290","author":"Tenenbaum","year":"2000","journal-title":"Science"},{"key":"10.1016\/j.swevo.2024.101729_b37","series-title":"Neural Information Processing Systems","article-title":"Locality preserving projections","author":"He","year":"2003"},{"issue":"6","key":"10.1016\/j.swevo.2024.101729_b38","doi-asserted-by":"crossref","first-page":"1373","DOI":"10.1162\/089976603321780317","article-title":"Laplacian eigenmaps for dimensionality reduction and data representation","volume":"15","author":"Belkin","year":"2003","journal-title":"Neural Comput."},{"issue":"5","key":"10.1016\/j.swevo.2024.101729_b39","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1109\/TEVC.2005.861417","article-title":"A review of multiobjective test problems and a scalable test problem toolkit","volume":"10","author":"Huband","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"1","key":"10.1016\/j.swevo.2024.101729_b40","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1007\/s40747-017-0039-7","article-title":"A benchmark test suite for evolutionary many-objective optimization","volume":"3","author":"Cheng","year":"2017","journal-title":"Complex Intell. Syst."},{"issue":"2","key":"10.1016\/j.swevo.2024.101729_b41","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1109\/TEVC.2003.810761","article-title":"The balance between proximity and diversity in multiobjective evolutionary algorithms","volume":"7","author":"Bosman","year":"2003","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.swevo.2024.101729_b42","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1109\/TEVC.2011.2161872","article-title":"Using the averaged hausdorff distance as a performance measure in evolutionary multiobjective optimization","volume":"16","author":"Schutze","year":"2012","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"6","key":"10.1016\/j.swevo.2024.101729_b43","doi-asserted-by":"crossref","first-page":"1765","DOI":"10.1109\/TEVC.2022.3226837","article-title":"Surrogate-assisted differential evolution with adaptive multisubspace search for large-scale expensive optimization","volume":"27","author":"Gu","year":"2023","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2024.101729_b44","first-page":"1","article-title":"Multiple classifiers-assisted evolutionary algorithm based on decomposition for high-dimensional multi-objective problems","author":"Sonoda","year":"2022","journal-title":"IEEE Trans. Evol. Comput."},{"year":"2011","series-title":"Work Roll System Optimisation Using Thermal Analysis and Genetic Algorithm","author":"Azene","key":"10.1016\/j.swevo.2024.101729_b45"},{"key":"10.1016\/j.swevo.2024.101729_b46","doi-asserted-by":"crossref","first-page":"49275","DOI":"10.1109\/ACCESS.2024.3383916","article-title":"Benchmarking real-world many-objective problems: A problem suite with baseline results","volume":"12","author":"Palakonda","year":"2024","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.swevo.2024.101729_b47","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1109\/4235.797969","article-title":"Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach","volume":"3","author":"Zitzler","year":"1999","journal-title":"IEEE Trans. Evol. Comput."}],"container-title":["Swarm and Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210650224002670?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210650224002670?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,30]],"date-time":"2024-11-30T11:25:32Z","timestamp":1732965932000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2210650224002670"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":47,"alternative-id":["S2210650224002670"],"URL":"https:\/\/doi.org\/10.1016\/j.swevo.2024.101729","relation":{},"ISSN":["2210-6502"],"issn-type":[{"type":"print","value":"2210-6502"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A dimensionality reduction assisted evolutionary algorithm for high-dimensional expensive multi\/many-objective optimization","name":"articletitle","label":"Article Title"},{"value":"Swarm and Evolutionary Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.swevo.2024.101729","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"101729"}}