{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T05:48:16Z","timestamp":1744264096090,"version":"3.37.3"},"reference-count":59,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003399","name":"Science and Technology Commission of Shanghai Municipality","doi-asserted-by":"publisher","award":["19511120601","2018AAA0100902"],"id":[{"id":"10.13039\/501100003399","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61731009","61907015"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Swarm and Evolutionary Computation"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.swevo.2022.101061","type":"journal-article","created":{"date-parts":[[2022,3,22]],"date-time":"2022-03-22T16:31:38Z","timestamp":1647966698000},"page":"101061","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":24,"special_numbering":"C","title":["PS-Tree: A piecewise symbolic regression tree"],"prefix":"10.1016","volume":"71","author":[{"given":"Hengzhe","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4768-5946","authenticated-orcid":false,"given":"Aimin","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Hong","family":"Qian","sequence":"additional","affiliation":[]},{"given":"Hu","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.swevo.2022.101061_bib0001","series-title":"The Elements of Statistical Learning","volume":"vol.\u00a01","author":"Friedman","year":"2001"},{"issue":"3","key":"10.1016\/j.swevo.2022.101061_bib0002","doi-asserted-by":"crossref","first-page":"370","DOI":"10.2307\/2344614","article-title":"Generalized linear models","volume":"135","author":"Nelder","year":"1972","journal-title":"J. R. Stat. Soc. Ser. A"},{"key":"10.1016\/j.swevo.2022.101061_bib0003","series-title":"Advances in Neural Information Processing Systems 8, NIPS, Denver, CO, USA, November 27\u201330, 1995","first-page":"514","article-title":"Gaussian processes for regression","author":"Williams","year":"1995"},{"key":"10.1016\/j.swevo.2022.101061_bib0004","first-page":"155","article-title":"Support vector regression machines","volume":"9","author":"Drucker","year":"1996","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.swevo.2022.101061_bib0005","first-page":"1189","article-title":"Greedy function approximation: a gradient boosting machine","author":"Friedman","year":"2001","journal-title":"Ann. Stat."},{"issue":"6","key":"10.1016\/j.swevo.2022.101061_bib0006","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1109\/72.97934","article-title":"A general regression neural network","volume":"2","author":"Specht","year":"1991","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.swevo.2022.101061_bib0007","series-title":"Deep Learning","volume":"vol.\u00a01","author":"Goodfellow","year":"2016"},{"key":"10.1016\/j.swevo.2022.101061_bib0008","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"1026","article-title":"Delving deep into rectifiers: surpassing human-level performance on imagenet classification","author":"He","year":"2015"},{"key":"10.1016\/j.swevo.2022.101061_bib0009","series-title":"Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2\u20137, 2019, Volume 1 (Long and Short Papers)","first-page":"4171","article-title":"BERT: pre-training of deep bidirectional transformers for language understanding","author":"Devlin","year":"2019"},{"issue":"5","key":"10.1016\/j.swevo.2022.101061_bib0010","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1038\/s42256-019-0048-x","article-title":"Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead","volume":"1","author":"Rudin","year":"2019","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.swevo.2022.101061_bib0011","series-title":"Advances in Neural Information Processing Systems","first-page":"3146","article-title":"LightGBM: a highly efficient gradient boosting decision tree","author":"Ke","year":"2017"},{"key":"10.1016\/j.swevo.2022.101061_bib0012","series-title":"Proceedings of the Genetic and Evolutionary Computation Conference","first-page":"1012","article-title":"What\u2019s inside the black-box? A genetic programming method for interpreting complex machine learning models","author":"Evans","year":"2019"},{"key":"10.1016\/j.swevo.2022.101061_bib0013","series-title":"Classification and regression trees","volume":"vol.\u00a067","author":"Brieman","year":"1984"},{"key":"10.1016\/j.swevo.2022.101061_bib0014","series-title":"5th Australian Joint Conference on Artificial Intelligence","first-page":"343","article-title":"Learning with continuous classes","volume":"vol.\u00a092","author":"Quinlan","year":"1992"},{"key":"10.1016\/j.swevo.2022.101061_bib0015","series-title":"Introduction to Evolutionary Computing","first-page":"25","article-title":"What is an evolutionary algorithm?","author":"Eiben","year":"2015"},{"issue":"5","key":"10.1016\/j.swevo.2022.101061_bib0016","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1109\/TETCI.2017.2743758","article-title":"An efficient feature selection algorithm for evolving job shop scheduling rules with genetic programming","volume":"1","author":"Mei","year":"2017","journal-title":"IEEE Trans. Emerg. Top. Comput. Intell."},{"issue":"10","key":"10.1016\/j.swevo.2022.101061_bib0017","doi-asserted-by":"crossref","first-page":"1040","DOI":"10.1109\/TSE.2018.2874648","article-title":"ARJA: automated repair of java programs via multi-objective genetic programming","volume":"46","author":"Yuan","year":"2020","journal-title":"IEEE Trans. Softw. Eng."},{"issue":"1","key":"10.1016\/j.swevo.2022.101061_bib0018","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1162\/evco_a_00253","article-title":"Evolution of deep convolutional neural networks using cartesian genetic programming","volume":"28","author":"Suganuma","year":"2020","journal-title":"Evol. Comput."},{"key":"10.1016\/j.swevo.2022.101061_bib0019","series-title":"Genetic Programming: On the Programming of Computers by Means of Natural Selection","volume":"vol.\u00a01","author":"Koza","year":"1992"},{"key":"10.1016\/j.swevo.2022.101061_bib0020","doi-asserted-by":"crossref","first-page":"100640","DOI":"10.1016\/j.swevo.2019.100640","article-title":"On explaining machine learning models by evolving crucial and compact features","volume":"53","author":"Virgolin","year":"2020","journal-title":"Swarm Evol. Comput."},{"issue":"3","key":"10.1016\/j.swevo.2022.101061_bib0021","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1023\/B:GENP.0000030195.77571.f9","article-title":"Scaled symbolic regression","volume":"5","author":"Keijzer","year":"2004","journal-title":"Genet. Program. Evol. Mach."},{"key":"10.1016\/j.swevo.2022.101061_bib0022","series-title":"Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation","first-page":"155","article-title":"Faster genetic programming based on local gradient search of numeric leaf values","author":"Topchy","year":"2001"},{"key":"10.1016\/j.swevo.2022.101061_bib0023","doi-asserted-by":"crossref","first-page":"100729","DOI":"10.1016\/j.swevo.2020.100729","article-title":"Semantic approximation for reducing code bloat in genetic programming","volume":"58","author":"Nguyen","year":"2020","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2022.101061_bib0024","article-title":"Efficient regularized piecewise-linear regression trees","author":"Lefakis","year":"2019","journal-title":"CoRR"},{"key":"10.1016\/j.swevo.2022.101061_bib0025","series-title":"Proceedings of the European Conference on Machine Learning","first-page":"128","article-title":"Induction of model trees for predicting continuous classes","author":"Wang","year":"1997"},{"key":"10.1016\/j.swevo.2022.101061_bib0026","series-title":"Proceedings of the 28th International Joint Conference on Artificial Intelligence","first-page":"3432","article-title":"Gradient boosting with piece-wise linear regression trees","author":"Shi","year":"2019"},{"key":"10.1016\/j.swevo.2022.101061_bib0027","series-title":"Proceedings of the Fourteenth International Conference on Machine Learning","first-page":"385","article-title":"Functional models for regression tree leaves","author":"Torgo","year":"1997"},{"year":"2013","series-title":"Foundations of Genetic Programming","author":"Langdon","key":"10.1016\/j.swevo.2022.101061_bib0028"},{"issue":"4","key":"10.1016\/j.swevo.2022.101061_bib0029","doi-asserted-by":"crossref","first-page":"1513","DOI":"10.1016\/j.eswa.2007.08.060","article-title":"Evolving model trees for mining data sets with continuous-valued classes","volume":"35","author":"Potgieter","year":"2008","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.swevo.2022.101061_bib0030","first-page":"1441","article-title":"Genetic algorithms for the structural optimisation of learned polynomial expressions","volume":"186","author":"Potgieter","year":"2007","journal-title":"Appl. Math. Comput."},{"issue":"3","key":"10.1016\/j.swevo.2022.101061_bib0031","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1109\/TSMCC.2011.2157494","article-title":"A survey of evolutionary algorithms for decision-tree induction","volume":"42","author":"Barros","year":"2011","journal-title":"IEEE Trans. Syst. Man Cybern.Part C"},{"issue":"5","key":"10.1016\/j.swevo.2022.101061_bib0032","doi-asserted-by":"crossref","first-page":"954","DOI":"10.1016\/j.ins.2010.11.010","article-title":"Evolutionary model trees for handling continuous classes in machine learning","volume":"181","author":"Barros","year":"2011","journal-title":"Inf. Sci."},{"key":"10.1016\/j.swevo.2022.101061_bib0033","first-page":"3585","article-title":"Learning symbolic representations of hybrid dynamical systems","volume":"13","author":"Ly","year":"2012","journal-title":"J. Mach. Learn. Res."},{"issue":"21","key":"10.1016\/j.swevo.2022.101061_bib0034","article-title":"Spatial estimate and mapping of reference evapotranspiration in Khuzestan province","volume":"11","author":"Jamei","year":"2013","journal-title":"J. Geogr. Reg. Dev."},{"issue":"5","key":"10.1016\/j.swevo.2022.101061_bib0035","doi-asserted-by":"crossref","first-page":"767","DOI":"10.1006\/jsvi.1995.0346","article-title":"Dynamics of a piecewise non-linear system subject to dual harmonic excitation using parametric continuation","volume":"184","author":"Padmanabhan","year":"1995","journal-title":"J. Sound Vib."},{"issue":"4","key":"10.1016\/j.swevo.2022.101061_bib0036","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1016\/0031-9201(81)90046-7","article-title":"Preliminary reference earth model","volume":"25","author":"Dziewonski","year":"1981","journal-title":"Phys. Earth Planet. Inter."},{"issue":"1","key":"10.1016\/j.swevo.2022.101061_bib0037","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1002\/widm.8","article-title":"Classification and regression trees","volume":"1","author":"Loh","year":"2011","journal-title":"Wiley Interdiscip. Rev. Data Min.Knowl. Discov."},{"issue":"1","key":"10.1016\/j.swevo.2022.101061_bib0038","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/0095-0696(78)90006-2","article-title":"Hedonic housing prices and the demand for clean air","volume":"5","author":"Harrison Jr","year":"1978","journal-title":"J. Environ. Econ. Manage."},{"key":"10.1016\/j.swevo.2022.101061_bib0039","series-title":"Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation","first-page":"983","article-title":"Building predictive models via feature synthesis","author":"Arnaldo","year":"2015"},{"issue":"5","key":"10.1016\/j.swevo.2022.101061_bib0040","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","article-title":"Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning","volume":"35","author":"Shin","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"year":"1984","series-title":"Classification and Regression Trees","author":"Breiman","key":"10.1016\/j.swevo.2022.101061_bib0041"},{"key":"10.1016\/j.swevo.2022.101061_bib0042","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1016\/j.patcog.2019.05.006","article-title":"Genetic programming for multiple-feature construction on high-dimensional classification","volume":"93","author":"Tran","year":"2019","journal-title":"Pattern Recognit."},{"issue":"1","key":"10.1016\/j.swevo.2022.101061_bib0043","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"1","key":"10.1016\/j.swevo.2022.101061_bib0044","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1023\/A:1018946025316","article-title":"Regularization networks and support vector machines","volume":"13","author":"Evgeniou","year":"2000","journal-title":"Adv. Comput. Math."},{"year":"1993","series-title":"Nonparametric Regression and Generalized Linear Models: A Roughness Penalty Approach","author":"Green","key":"10.1016\/j.swevo.2022.101061_bib0045"},{"issue":"1","key":"10.1016\/j.swevo.2022.101061_bib0046","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13040-017-0154-4","article-title":"PMLB: a large benchmark suite for machine learning evaluation and comparison","volume":"10","author":"Olson","year":"2017","journal-title":"BioData Min."},{"key":"10.1016\/j.swevo.2022.101061_bib0047","series-title":"Proceedings of the Genetic and Evolutionary Computation Conference","first-page":"1183","article-title":"Where are we now? A large benchmark study of recent symbolic regression methods","author":"Orzechowski","year":"2018"},{"key":"10.1016\/j.swevo.2022.101061_bib0048","series-title":"Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)","article-title":"Contemporary symbolic regression methods and their relative performance","author":"Cava","year":"2021"},{"issue":"2","key":"10.1016\/j.swevo.2022.101061_bib0049","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1109\/4235.996017","article-title":"A fast and elitist multiobjective genetic algorithm: NSGA-II","volume":"6","author":"Deb","year":"2002","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2022.101061_bib0050","article-title":"SPEA2: improving the strength Pareto evolutionary algorithm","volume":"103","author":"Zitzler","year":"2001","journal-title":"TIK-Report"},{"issue":"5","key":"10.1016\/j.swevo.2022.101061_bib0051","doi-asserted-by":"crossref","first-page":"630","DOI":"10.1109\/TEVC.2014.2362729","article-title":"Solving uncompromising problems with lexicase selection","volume":"19","author":"Helmuth","year":"2015","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2022.101061_bib0052","unstructured":"W. La Cava, P. Orzechowski, B. Burlacu, F.O. de Fran\u00e7a, M. Virgolin, Y. Jin, M. Kommenda, J.H. Moore, Contemporary symbolic regression methods and their relative performance, arXiv:2107.14351(2021)."},{"key":"10.1016\/j.swevo.2022.101061_bib0053","series-title":"Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"785","article-title":"XGBoost: A scalable tree boosting system","author":"Chen","year":"2016"},{"key":"10.1016\/j.swevo.2022.101061_bib0054","series-title":"Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion","first-page":"1562","article-title":"Operon C++ an efficient genetic programming framework for symbolic regression","author":"Burlacu","year":"2020"},{"key":"10.1016\/j.swevo.2022.101061_bib0055","series-title":"Proceedings of the Genetic and Evolutionary Computation Conference","first-page":"1084","article-title":"Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression","author":"Virgolin","year":"2019"},{"key":"10.1016\/j.swevo.2022.101061_bib0056","first-page":"1","article-title":"Statistical comparisons of classifiers over multiple data sets","volume":"7","author":"Dem\u0161ar","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.swevo.2022.101061_bib0057","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.swevo.2016.12.002","article-title":"A fast hypervolume driven selection mechanism for many-objective optimisation problems","volume":"34","author":"Rostami","year":"2017","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2022.101061_bib0058","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1016\/j.patcog.2019.05.006","article-title":"Genetic programming for multiple-feature construction on high-dimensional classification","volume":"93","author":"Tran","year":"2019","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.swevo.2022.101061_bib0059","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/j.swevo.2018.03.015","article-title":"Multidimensional genetic programming for multiclass classification","volume":"44","author":"La Cava","year":"2019","journal-title":"Swarm Evol. Comput."}],"container-title":["Swarm and Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210650222000335?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210650222000335?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,31]],"date-time":"2024-01-31T17:37:15Z","timestamp":1706722635000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2210650222000335"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":59,"alternative-id":["S2210650222000335"],"URL":"https:\/\/doi.org\/10.1016\/j.swevo.2022.101061","relation":{},"ISSN":["2210-6502"],"issn-type":[{"type":"print","value":"2210-6502"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"PS-Tree: A piecewise symbolic regression tree","name":"articletitle","label":"Article Title"},{"value":"Swarm and Evolutionary Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.swevo.2022.101061","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101061"}}