{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T17:14:54Z","timestamp":1725902094208},"reference-count":56,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,6,1]],"date-time":"2018-06-01T00:00:00Z","timestamp":1527811200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Swarm and Evolutionary Computation"],"published-print":{"date-parts":[[2018,6]]},"DOI":"10.1016\/j.swevo.2017.12.004","type":"journal-article","created":{"date-parts":[[2017,12,7]],"date-time":"2017-12-07T09:56:17Z","timestamp":1512640577000},"page":"1-23","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":36,"special_numbering":"C","title":["A novel orthogonal PSO algorithm based on orthogonal diagonalization"],"prefix":"10.1016","volume":"40","author":[{"given":"Loau Tawfak","family":"Al-Bahrani","sequence":"first","affiliation":[]},{"given":"Jagdish C.","family":"Patra","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.swevo.2017.12.004_bib1","series-title":"IEEE International Conference on Neural Networks","first-page":"1942","article-title":"Particle swarm optimization","volume":"vol. 4","author":"Kennedy","year":"1995"},{"key":"10.1016\/j.swevo.2017.12.004_bib2","series-title":"Proceedings of the Sixth International Symposium on Micro Machine and Human Science","first-page":"39","article-title":"A\u00a0new optimizer using particle swarm theory","author":"Eberhart","year":"1995"},{"key":"10.1016\/j.swevo.2017.12.004_bib3","series-title":"Proceedings of the Congress on Evolutionary Computation","first-page":"1671","article-title":"Population structure and particle swarm performance","author":"Kennedy","year":"2002"},{"issue":"3","key":"10.1016\/j.swevo.2017.12.004_bib4","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1109\/TEVC.2004.826074","article-title":"The fully informed particle swarm: simpler, maybe better","volume":"8","author":"Mendes","year":"2004","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib5","doi-asserted-by":"crossref","first-page":"1764","DOI":"10.1016\/j.energy.2009.12.029","article-title":"A\u00a0new fuzzy adaptive particle swarm\u00a0optimization for non-smooth economic dispatch","volume":"35","author":"Niknam","year":"2010","journal-title":"Energy"},{"issue":"7","key":"10.1016\/j.swevo.2017.12.004_bib6","doi-asserted-by":"crossref","first-page":"1127","DOI":"10.1109\/TCYB.2013.2279802","article-title":"A\u00a0scatter learning particle swarm optimization algorithm for multimodal problems","volume":"44","author":"Ren","year":"2014","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.swevo.2017.12.004_bib7","series-title":"Proceedings of the IEEE International Conference on Evolutionary Computation","first-page":"69","article-title":"A\u00a0modified particle swarm optimizer","author":"Shi","year":"1998"},{"key":"10.1016\/j.swevo.2017.12.004_bib8","series-title":"Proceedings of the IEEE International Conference on Evolutionary Computation","first-page":"84","article-title":"Comparing inertia weights and constriction factors in particle swarm optimization","author":"Eberhart","year":"2000"},{"issue":"3","key":"10.1016\/j.swevo.2017.12.004_bib9","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1016\/j.cor.2004.08.012","article-title":"Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization","volume":"33","author":"Chatterjee","year":"2006","journal-title":"Comput. Oper. Res."},{"key":"10.1016\/j.swevo.2017.12.004_bib10","series-title":"Proceedings of the International Symposium on\u00a0Systems\u00a0and Control in Aerospace and Astronautic (ISSCAA)","first-page":"977","article-title":"A\u00a0new adaptive well-chosen inertia weight strategy\u00a0to\u00a0automatically harmonize global and local search ability in particle\u00a0swarm\u00a0optimization","author":"Lei","year":"2006"},{"issue":"2","key":"10.1016\/j.swevo.2017.12.004_bib11","first-page":"1205","article-title":"A\u00a0modified particle swarm optimizer with dynamic adaptation","volume":"189","author":"Yang","year":"2007","journal-title":"Appl. Math. Comput."},{"issue":"1","key":"10.1016\/j.swevo.2017.12.004_bib12","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.asoc.2007.01.010","article-title":"On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems","volume":"8","author":"Arumugam","year":"2008","journal-title":"Appl. Soft Comput."},{"issue":"3","key":"10.1016\/j.swevo.2017.12.004_bib13","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1109\/TEVC.2005.857610","article-title":"Comprehensive learning particle swarm optimizer for global optimization of multimodal functions","volume":"10","author":"Liang","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"10.1016\/j.swevo.2017.12.004_bib14","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1109\/TEVC.2004.826071","article-title":"Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients","volume":"8","author":"Ratnaweera","year":"2004","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.swevo.2017.12.004_bib15","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1109\/TEVC.2011.2173577","article-title":"Particle swarm optimization with an aging leader and challengers","volume":"17","author":"Chen","year":"2013","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib16","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.jocs.2016.01.004","article-title":"A\u00a0cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems","volume":"13","author":"Arani","year":"2016","journal-title":"J.\u00a0Comput. Sci."},{"key":"10.1016\/j.swevo.2017.12.004_bib17","doi-asserted-by":"crossref","first-page":"534","DOI":"10.1016\/j.asoc.2016.06.028","article-title":"Multi swarm bare bones particle swarm optimization with distribution adaption","volume":"47","author":"Vafashoar","year":"2016","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.swevo.2012.09.002","article-title":"S-shaped versus V-shaped transfer functions for binary particle swarm optimization","volume":"9","author":"Mirjalili","year":"2013","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib19","doi-asserted-by":"crossref","first-page":"542","DOI":"10.1016\/j.neucom.2015.08.065","article-title":"Formalized model and analysis of mixed swarm based cooperative particle swarm optimization","volume":"174","author":"Jie","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.swevo.2017.12.004_bib20","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.swevo.2015.05.002","article-title":"Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation","volume":"24","author":"Lynn","year":"2015","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib21","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1016\/j.asoc.2015.10.004","article-title":"A\u00a0novel stability-based adaptive inertia weight for particle swarm optimization","volume":"38","author":"Taherkhani","year":"2016","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib22","doi-asserted-by":"crossref","first-page":"966","DOI":"10.1016\/j.neucom.2015.07.025","article-title":"Clustering and pattern search for enhancing particle swarm optimization with Euclidean spatial neighborhood search","volume":"171","author":"Zhao","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.swevo.2017.12.004_bib23","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.ins.2015.08.018","article-title":"Accelerating particle swarm optimization using crisscross search","volume":"329","author":"Meng","year":"2016","journal-title":"Inf. Sci."},{"key":"10.1016\/j.swevo.2017.12.004_bib24","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.knosys.2015.12.020","article-title":"Multiple learning particle swarm optimization with space transformation perturbation and its application in ethylene cracking furnace optimization","volume":"96","author":"Yu","year":"2016","journal-title":"Knowledge-Based Syst."},{"key":"10.1016\/j.swevo.2017.12.004_bib25","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.asoc.2016.07.034","article-title":"A\u00a0new multi-function global particle swarm optimization","volume":"49","author":"Ruan","year":"2016","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.swevo.2013.10.003","article-title":"A\u00a0two-swarm cooperative particle warms optimization","volume":"15","author":"Sun","year":"2014","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib27","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1016\/j.ins.2014.09.030","article-title":"Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems","volume":"293","author":"Li","year":"2015","journal-title":"Inf. Sci."},{"key":"10.1016\/j.swevo.2017.12.004_bib28","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.swevo.2016.01.006","article-title":"Directionally Driven self-regulating particle swarm optimization algorithm","volume":"28","author":"Tanweer","year":"2016","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib29","first-page":"584","article-title":"Particle swarm optimization using dynamic tournament topology","volume":"48","author":"Wang","year":"2016","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib30","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.eswa.2016.02.042","article-title":"Velocity Bounded Boolean Particle Swarm Optimization for improved feature selection in liver and kidney disease diagnosis","volume":"56","author":"Gunasundari","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.swevo.2017.12.004_bib31","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.swevo.2016.11.001","article-title":"Termite spatial correlation based particle swarm optimization for unconstrained optimization","volume":"33","author":"Sharma","year":"2017","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib32","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.swevo.2012.12.004","article-title":"An improved PSO algorithm with a territorial diversity preserving scheme and enhanced exploration-exploitation balance","volume":"11","author":"Arani","year":"2013","journal-title":"Swarm Evol. Comput."},{"issue":"2","key":"10.1016\/j.swevo.2017.12.004_bib33","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1109\/TCYB.2014.2322602","article-title":"A\u00a0competitive swarm optimizer for large scale optimization","volume":"45","author":"Chen","year":"2015","journal-title":"IEEE Trans. Cybern."},{"issue":"2","key":"10.1016\/j.swevo.2017.12.004_bib34","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1109\/TEVC.2011.2112662","article-title":"Cooperatively coevolving particle swarm for large scale optimization","volume":"16","author":"Li","year":"2012","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib35","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.ins.2014.08.039","article-title":"A\u00a0Social learning particle swarm optimization algorithm for scalable optimization","volume":"291","author":"Cheng","year":"2015","journal-title":"Inf. Sci."},{"issue":"4","key":"10.1016\/j.swevo.2017.12.004_bib36","doi-asserted-by":"crossref","first-page":"919","DOI":"10.1109\/TFUZZ.2013.2278972","article-title":"OptiFel: a convergent heterogeneous particle swarm optimization algorithm for Takagi-Sugeno fuzzy modeling","volume":"22","author":"Cheung","year":"2014","journal-title":"IEEE Trans. Fuzzy Syst."},{"issue":"9","key":"10.1016\/j.swevo.2017.12.004_bib37","doi-asserted-by":"crossref","first-page":"1457","DOI":"10.1109\/TNN.2011.2162341","article-title":"A\u00a0Dynamic feed forward neural network based on Gaussian particle swarm optimization and its application for predictive control","volume":"22","author":"Han","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.swevo.2017.12.004_bib38","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.engappai.2015.03.003","article-title":"Quality and robustness improvement for real world industrial systems using a fuzzy particle swarm optimization","volume":"47","author":"Ling","year":"2016","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"6","key":"10.1016\/j.swevo.2017.12.004_bib39","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1109\/TEVC.2010.2052054","article-title":"Orthogonal learning particle swarm optimization","volume":"15","author":"Zhan","year":"2011","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"10.1016\/j.swevo.2017.12.004_bib40","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1109\/TSMCB.2012.2222373","article-title":"A\u00a0novel artificial bee colony algorithm based modified search equation and orthogonal learning","volume":"43","author":"Gao","year":"2013","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.swevo.2017.12.004_bib41","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1109\/4235.910464","article-title":"An orthogonal genetic algorithm with quantization for global numerical optimization","volume":"5","author":"Leung","year":"2011","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"3","key":"10.1016\/j.swevo.2017.12.004_bib42","doi-asserted-by":"crossref","first-page":"526","DOI":"10.1109\/TEVC.2008.2009457","article-title":"Differential evolution using a neighborhood-based mutation operator","volume":"13","author":"Das","year":"2009","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"10.1016\/j.swevo.2017.12.004_bib43","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1109\/TSMCB.2012.2213808","article-title":"Gaussian bare-bones differential evolution","volume":"43","author":"Wang","year":"2013","journal-title":"IEEE Trans. Cybern."},{"issue":"1","key":"10.1016\/j.swevo.2017.12.004_bib44","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1108\/02644400410511864","article-title":"Hybrid estimation of distribution algorithm for global optimization","volume":"21","author":"Zhang","year":"2004","journal-title":"Eng. Comput."},{"issue":"5","key":"10.1016\/j.swevo.2017.12.004_bib45","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1109\/TEVC.2006.886802","article-title":"An evolutionary algorithm for global optimization based on level-set evolution and Latin squares","volume":"11","author":"Wang","year":"2007","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib46","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.swevo.2012.12.003","article-title":"Distributed learning with biogeography-based optimization: Markov modeling and robot control","volume":"10","author":"Simon","year":"2016","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib47","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1016\/j.swevo.2012.11.002","article-title":"Adaptive evolutionary programming with p-best mutation strategy","volume":"9","author":"Das","year":"2013","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib48","series-title":"Proceedings of the International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Orthogonal PSO algorithm for solving ramp rate constraints and prohibited operating zones in smart grid applications","author":"Al Bahrani","year":"2015"},{"key":"10.1016\/j.swevo.2017.12.004_bib49","series-title":"Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC)","first-page":"14","article-title":"Orthogonal PSO algorithm for economic dispatch of power under power grid constraints","author":"Al Bahrani","year":"2015"},{"key":"10.1016\/j.swevo.2017.12.004_bib50","series-title":"Proceedings of International Joint Conference on Neural Networks (IJCNN)","first-page":"660","article-title":"Orthogonal PSO algorithm for optimal dispatch of power of large-scale thermal generating units in smart power grid under power grid constraints","author":"Al Bahrani","year":"2016"},{"key":"10.1016\/j.swevo.2017.12.004_bib51","series-title":"Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007)","first-page":"120","article-title":"Defining a standard for particle swarm optimization","author":"Bratton","year":"2007"},{"key":"10.1016\/j.swevo.2017.12.004_bib52","series-title":"Elementary Linear Algebra","author":"Grossman","year":"1994"},{"key":"10.1016\/j.swevo.2017.12.004_bib53","series-title":"Problem Definitions and Evaluation Criteria for the CEC\u20192005 Special Session on Real Parameter Optimization, Nanyang Technological University, Tech. Rep","author":"Suganthan","year":"2005"},{"key":"10.1016\/j.swevo.2017.12.004_bib54","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.swevo.2015.07.003","article-title":"Novel benchmark functions for continuous multimodal optimization with comparative results","volume":"26","author":"Qu","year":"2016","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2017.12.004_bib55","series-title":"Benchmark Functions for the CEC\u20192008 Special Session and Competition on Large Scale Global Optimization, Tech. Rep","author":"Tang","year":"2008"},{"key":"10.1016\/j.swevo.2017.12.004_bib56","series-title":"Problem De\ufb01nitions and Evaluation Criteria for the CEC 2013 Special Session on Real-parameter Optimization, Technical Report","author":"Liang","year":"2012"}],"container-title":["Swarm and Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210650216302851?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210650216302851?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2018,8,25]],"date-time":"2018-08-25T07:28:50Z","timestamp":1535182130000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2210650216302851"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6]]},"references-count":56,"alternative-id":["S2210650216302851"],"URL":"https:\/\/doi.org\/10.1016\/j.swevo.2017.12.004","relation":{},"ISSN":["2210-6502"],"issn-type":[{"value":"2210-6502","type":"print"}],"subject":[],"published":{"date-parts":[[2018,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel orthogonal PSO algorithm based on orthogonal diagonalization","name":"articletitle","label":"Article Title"},{"value":"Swarm and Evolutionary Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.swevo.2017.12.004","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}