{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T11:12:04Z","timestamp":1723029124751},"reference-count":45,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2014,10,1]],"date-time":"2014-10-01T00:00:00Z","timestamp":1412121600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Swarm and Evolutionary Computation"],"published-print":{"date-parts":[[2014,10]]},"DOI":"10.1016\/j.swevo.2014.05.002","type":"journal-article","created":{"date-parts":[[2014,5,29]],"date-time":"2014-05-29T00:45:36Z","timestamp":1401324336000},"page":"38-53","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":39,"special_numbering":"C","title":["mNAFSA: A novel approach for optimization in dynamic environments with global changes"],"prefix":"10.1016","volume":"18","author":[{"given":"Danial","family":"Yazdani","sequence":"first","affiliation":[]},{"given":"Babak","family":"Nasiri","sequence":"additional","affiliation":[]},{"given":"Alireza","family":"Sepas-Moghaddam","sequence":"additional","affiliation":[]},{"given":"Mohammadreza","family":"Meybodi","sequence":"additional","affiliation":[]},{"given":"Mohammadreza","family":"Akbarzadeh-Totonchi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.swevo.2014.05.002_bib1","first-page":"32","article-title":"An optimizing method based on autonomous animals: fish swarm algorithm","volume":"22","author":"Lei","year":"2002","journal-title":"Syst. Eng.: Theory Pract."},{"key":"10.1016\/j.swevo.2014.05.002_bib2","doi-asserted-by":"crossref","unstructured":"Y. Luo, J. Zhang, X. Li, The optimization of PID controller parameters based on artificial fish swarm algorithm, in: Proceedings of the IEEE International Conference on Automation and Logistics, 2007, pp. 1058\u20131062.","DOI":"10.1109\/ICAL.2007.4338724"},{"key":"10.1016\/j.swevo.2014.05.002_bib3","unstructured":"M. Jiang, K. Zhu, Multiobjective optimization by artificial fish swarm algorithm, in: Proceedings of the IEEE International Conference on Computer Science and Automation Engineering, vol. 3, 2011, pp. 506\u2013511."},{"issue":"16","key":"10.1016\/j.swevo.2014.05.002_bib4","doi-asserted-by":"crossref","first-page":"4611","DOI":"10.1016\/j.cam.2010.04.020","article-title":"An augmented Lagrangian fish swarm based method for global optimization","volume":"235","author":"Rocha","year":"2011","journal-title":"J. Comput. Appl. Math."},{"issue":"8","key":"10.1016\/j.swevo.2014.05.002_bib5","doi-asserted-by":"crossref","first-page":"5367","DOI":"10.1016\/j.asoc.2011.05.022","article-title":"Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior","volume":"11","author":"Tsai","year":"2011","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.swevo.2014.05.002_bib6","doi-asserted-by":"crossref","unstructured":"S. He, N. Belacel, H. Hamam, Y. Bouslimani, Fuzzy clustering with improved artificial fish swarm algorithm, in: Proceedings of the International Joint Conference on Computational Sciences and Optimization, vol. 2, 2009, pp. 317\u2013321.","DOI":"10.1109\/CSO.2009.367"},{"key":"10.1016\/j.swevo.2014.05.002_bib7","doi-asserted-by":"crossref","first-page":"382","DOI":"10.1007\/978-3-642-25832-9_39","article-title":"Color quantization using modified artificial fish swarm algorithm","volume":"7106","author":"Yazdani","year":"2011","journal-title":"Lect. Notes Comput. Sci."},{"issue":"3","key":"10.1016\/j.swevo.2014.05.002_bib8","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1109\/TEVC.2005.846356","article-title":"Evolutionary optimization in uncertain environments\u2014a survey","volume":"9","author":"Jin","year":"2005","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"4","key":"10.1016\/j.swevo.2014.05.002_bib9","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1109\/TEVC.2005.857074","article-title":"Multiswarms, exclusion, and anti-convergence in dynamic environments","volume":"10","author":"Blackwell","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2014.05.002_bib10","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/978-3-540-74089-6_6","article-title":"Particle swarms for dynamic optimization problems","author":"Blackwell","year":"2008","journal-title":"Swarm Intelligence-Introduction and Applications, Book Part: 2, Natural Computing Series, Springer,"},{"key":"10.1016\/j.swevo.2014.05.002_bib11","unstructured":"J. Branke, Memory enhanced evolutionary algorithms for changing optimization problems, in: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 3, 1999, pp. 1875\u20131882."},{"key":"10.1016\/j.swevo.2014.05.002_bib12","unstructured":"J. Branke, The Moving Peaks Benchmark, \u3008http:\/\/people.aifb.kit.edu\/jbr\/MovPeaks\/\u3009."},{"key":"10.1016\/j.swevo.2014.05.002_bib13","doi-asserted-by":"crossref","unstructured":"J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942\u20131948.","DOI":"10.1109\/ICNN.1995.488968"},{"issue":"6","key":"10.1016\/j.swevo.2014.05.002_bib14","doi-asserted-by":"crossref","first-page":"1362","DOI":"10.1109\/TSMCB.2009.2015956","article-title":"Adaptive particle swarm optimization","volume":"39","author":"Zhan","year":"2009","journal-title":"IEEE Trans. Syst., Man, Cybern., Part B: Cybern."},{"key":"10.1016\/j.swevo.2014.05.002_bib15","unstructured":"Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE International Conference on Evolutionary Computation, CEC98, 1998, pp. 69\u201373."},{"key":"10.1016\/j.swevo.2014.05.002_bib16","unstructured":"R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in: Proceedings of the Congeress on Evolutionary Computation, 2000, pp. 84\u201388."},{"key":"10.1016\/j.swevo.2014.05.002_bib17","doi-asserted-by":"crossref","first-page":"556","DOI":"10.1109\/TEVC.2011.2169966","article-title":"A general framework of multipopulation methods with clustering in undetectable dynamic environments","volume":"16","author":"Li","year":"2011","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2014.05.002_bib18","doi-asserted-by":"crossref","unstructured":"A.B. Hashemi, M.R. Meybodi, Cellular PSO: a pso for dynamic environment, in: Proceedings of the 4th International Conference on Intelligence Computation and Applications (ISICA 2009), Lecture Notes in Computer, 2009.","DOI":"10.1007\/978-3-642-04843-2_45"},{"key":"10.1016\/j.swevo.2014.05.002_bib19","unstructured":"C. Li, S. Yang, Fast multi-swarm optimization for dynamic optimization problems, in: Proceedings of the ICNC \u201908, 4th International Conference on Natural Computation, vol. 7, 2008, pp. 624\u2013628."},{"key":"10.1016\/j.swevo.2014.05.002_bib20","unstructured":"X. Hu, R.C. Eberhart, Adaptive particle swarm optimization: detection and response to dynamic systems, in: Proceedings of the IEEE Congeress on Evolutionary Computation, vol. 2, 2002, pp. 1666\u20131670."},{"issue":"15","key":"10.1016\/j.swevo.2014.05.002_bib21","doi-asserted-by":"crossref","first-page":"3096","DOI":"10.1016\/j.ins.2008.01.020","article-title":"Multi-strategy ensemble particle swarm optimization for dynamic optimization","volume":"178","author":"Du","year":"2008","journal-title":"Inf. Sci."},{"key":"10.1016\/j.swevo.2014.05.002_bib22","doi-asserted-by":"crossref","unstructured":"S. Bird, X. Li, Using regression to improve local convergence, in: Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2007, 2007, pp. 592\u2013599.","DOI":"10.1109\/CEC.2007.4424524"},{"key":"10.1016\/j.swevo.2014.05.002_bib23","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/978-3-642-17563-3_16","article-title":"A new particle swarm optimization algorithm for dynamic environment. Swarm, Evolutionary, and Memetic Computing, SEMCO 2010","volume":"6466","author":"Kamosi","year":"2010","journal-title":"Lect. Notes in Comput. Sci."},{"issue":"6","key":"10.1016\/j.swevo.2014.05.002_bib24","doi-asserted-by":"crossref","first-page":"1634","DOI":"10.1109\/TSMCB.2010.2043527","article-title":"Particle swarm optimization with composite particles in dynamic environments","volume":"40","author":"Liu","year":"2010","journal-title":"IEEE Trans. Syst., Man, Cybern., Part B: Cybern."},{"issue":"3","key":"10.1016\/j.swevo.2014.05.002_bib25","doi-asserted-by":"crossref","first-page":"500","DOI":"10.1109\/TEVC.2008.2009031","article-title":"Dynamic evolutionary algorithm with variable relocation","volume":"13","author":"Woldesenbet","year":"2009","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"S12","key":"10.1016\/j.swevo.2014.05.002_bib26","first-page":"118","article-title":"Speciation based firefly algorithm for optimization in dynamic environments","volume":"8","author":"Nasiri","year":"2012","journal-title":"Int. J. Artif. Intell."},{"key":"10.1016\/j.swevo.2014.05.002_bib27","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1007\/978-3-642-21515-5_15","article-title":"Adaptive particle swarm optimization algorithm for dynamic environments","volume":"6728","author":"Rezazadeh","year":"2011","journal-title":"Lect. Notes Comput. Sci."},{"key":"10.1016\/j.swevo.2014.05.002_bib28","unstructured":"V. Noroozi, A.B. Hashemi, M.R. Meybodi, CellularDE: a cellular based optimization algorithm for dynamic environments, in: Proceedings of the 14th International Conference on Genetic and Evolutionary Computation (GECCO 2012), 2012, pp. 1519\u20131520."},{"issue":"1","key":"10.1016\/j.swevo.2014.05.002_bib29","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/s10898-012-9864-9","article-title":"Differential evolution for dynamic environments with unknown numbers of optima","volume":"55","author":"Plessis","year":"2012","journal-title":"J. Glob. Optim."},{"issue":"6","key":"10.1016\/j.swevo.2014.05.002_bib30","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1109\/TEVC.2010.2046667","article-title":"A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments","volume":"4","author":"Yang","year":"2010","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2014.05.002_bib31","doi-asserted-by":"crossref","unstructured":"D. Yazdani, M.R. Akbarzadeh-T, B. Nasiri,M.R. Meybodi, A new artificial fish swarm algorithm for dynamic optimization problems, in: Proceedings of the IEEE Congress on Evolutionary Computation, CEC2012, Australia, 2012.","DOI":"10.1109\/CEC.2012.6256169"},{"key":"10.1016\/j.swevo.2014.05.002_bib32","series-title":"Continuous dynamic optimisation using evolutionary algorithms (Ph.D. thesis)","author":"Nguyen","year":"2010"},{"key":"10.1016\/j.swevo.2014.05.002_bib33","unstructured":"F. Oppacher, M. Wineberg, The shifting balance genetic algorithm: Improving the GA in a dynamic environment, in: Proceedings of the Genetic and Evolutionary Computation Conference, 1999, pp. 504\u2013510."},{"key":"10.1016\/j.swevo.2014.05.002_bib34","first-page":"299","article-title":"A multi-population approach to dynamic optimization problems","volume":"6","author":"Branke","year":"2000","journal-title":"Adapt. Comput. Design Manuf."},{"key":"10.1016\/j.swevo.2014.05.002_bib35","first-page":"562","article-title":"Multi-population genetic algorithms with immigrants scheme for dynamic shortest path routing problems in mobile ad hoc networks","author":"Cheng","year":"2010","journal-title":"Appl. Evol. Comput."},{"key":"10.1016\/j.swevo.2014.05.002_bib36","doi-asserted-by":"crossref","unstructured":"R.I. Lung, D. Dumitrescu, A new collaborative evolutionary-swarm optimization technique, in: Proceedings of the Companion on Genetic and Evolutionary Computation GECCO, 2007, pp. 2817\u20132820.","DOI":"10.1145\/1274000.1274043"},{"key":"10.1016\/j.swevo.2014.05.002_bib37","unstructured":"R.K. Ursem, Multinational GAs: multimodal optimization techniques in dynamic environments, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2000, pp. 19\u201326."},{"key":"10.1016\/j.swevo.2014.05.002_bib38","doi-asserted-by":"crossref","unstructured":"X. Li, J. Branke, T. Blackwell, Particle swarm with speciation and adaptation in a dynamic environment, in: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, 2006, pp. 51\u201358.","DOI":"10.1145\/1143997.1144005"},{"key":"10.1016\/j.swevo.2014.05.002_bib39","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1109\/TEVC.2005.859468","article-title":"Locating and tracking multiple dynamic optima by a particle swarm model using speciation","volume":"10","author":"Parrott","year":"2006","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10.1016\/j.swevo.2014.05.002_bib40","unstructured":"D. Parrott, X. Li, A particle swarm model for tracking multiple peaks in a dynamic environment using speciation, in: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, CEC2004, 2004, pp. 98\u2013103."},{"key":"10.1016\/j.swevo.2014.05.002_bib41","doi-asserted-by":"crossref","unstructured":"C. Li, S. Yang, A clustering particle swarm optimizer for dynamic optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, CEC \u201809, 2009, pp. 439\u2013446.","DOI":"10.1109\/CEC.2009.4982979"},{"issue":"2","key":"10.1016\/j.swevo.2014.05.002_bib42","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1007\/s12293-009-0027-6","article-title":"Dynamic function optimisation with hybridised extremal dynamics","volume":"2","author":"Moser","year":"2010","journal-title":"Memet. Comput."},{"key":"10.1016\/j.swevo.2014.05.002_bib43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.swevo.2012.05.001","article-title":"Evolutionary dynamic optimization: a survey of the state of the art","volume":"6","author":"Nguyen","year":"2012","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2014.05.002_bib44","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.swevo.2012.08.002","article-title":"Economic analysis and power management of a stand-alone wind\/photovoltaic hybrid energy system using biogeography based optimization algorithm","volume":"8","author":"Kumar","year":"2013","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.swevo.2014.05.002_bib45","series-title":"SPSS: Analysis Without Anguish: Versions 7.0, 7.5, 8.0 for Windows","author":"Coakes","year":"1999"}],"container-title":["Swarm and Evolutionary Computation"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S221065021400039X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S221065021400039X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,10]],"date-time":"2019-08-10T23:28:34Z","timestamp":1565479714000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S221065021400039X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2014,10]]},"references-count":45,"alternative-id":["S221065021400039X"],"URL":"https:\/\/doi.org\/10.1016\/j.swevo.2014.05.002","relation":{},"ISSN":["2210-6502"],"issn-type":[{"value":"2210-6502","type":"print"}],"subject":[],"published":{"date-parts":[[2014,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"mNAFSA: A novel approach for optimization in dynamic environments with global changes","name":"articletitle","label":"Article Title"},{"value":"Swarm and Evolutionary Computation","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.swevo.2014.05.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}