{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T18:25:21Z","timestamp":1726511121751},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,12,1]],"date-time":"2020-12-01T00:00:00Z","timestamp":1606780800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Sustainable Computing: Informatics and Systems"],"published-print":{"date-parts":[[2020,12]]},"DOI":"10.1016\/j.suscom.2020.100439","type":"journal-article","created":{"date-parts":[[2020,8,27]],"date-time":"2020-08-27T06:32:55Z","timestamp":1598509975000},"page":"100439","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["ML based sustainable precision agriculture: A future generation perspective"],"prefix":"10.1016","volume":"28","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2856-5858","authenticated-orcid":false,"given":"Rashmi","family":"Priya","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3338-6520","authenticated-orcid":false,"given":"Dharavath","family":"Ramesh","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.suscom.2020.100439_bib0005","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.compag.2018.10.024","article-title":"Forecasting yield by integrating agrarian factors and machine learning models: a survey","volume":"155","author":"Elavarasan","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.suscom.2020.100439_bib0010","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.compchemeng.2017.10.008","article-title":"Machine learning: overview of the recent progresses and implications for the process systems engineering field","volume":"114","author":"Lee","year":"2018","journal-title":"Comput. Chem. Eng."},{"issue":"2","key":"10.1016\/j.suscom.2020.100439_bib0015","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/J.ENG.2016.02.008","article-title":"Strategies and principles of distributed machine learning on big data","volume":"2","author":"Xing","year":"2016","journal-title":"Engineering"},{"key":"10.1016\/j.suscom.2020.100439_bib0020","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.compag.2017.03.010","article-title":"Automatic fruit count on coffee branches using computer vision","volume":"137","author":"Ramos","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.suscom.2020.100439_bib0025","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.biosystemseng.2015.10.003","article-title":"Detection of cherry tree branches with full foliage in planar architecture for automated sweet-cherry harvesting","volume":"146","author":"Amatya","year":"2016","journal-title":"Biosyst. Eng."},{"year":"2018","series-title":"Supervised Learning: Classification, Reference Module in Life Sciences","author":"Castelli","key":"10.1016\/j.suscom.2020.100439_bib0030"},{"year":"2019","series-title":"Climate Change and Clean Energy Management: Challenges and Growth Strategies","author":"Wang","key":"10.1016\/j.suscom.2020.100439_bib0035"},{"year":"2018","series-title":"Angela and Roberto, Unsupervised Learning: Clustering, Reference Module in Life Sciences","author":"Serra","key":"10.1016\/j.suscom.2020.100439_bib0040"},{"key":"10.1016\/j.suscom.2020.100439_bib0045","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.compag.2017.04.019","article-title":"Interoperable agro-meteorological observation and analysis platform for precision agriculture: a case study in citrus crop water requirement estimation","volume":"138","author":"Sawant","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.suscom.2020.100439_bib0050","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.scitotenv.2018.03.343","article-title":"Assessment of climate change impact on yield of major crops in the Banas river basin, India","volume":"635","author":"Dubey","year":"2018","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.suscom.2020.100439_bib0055","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.agrformet.2018.01.031","article-title":"Assessment of the agro-climatic indices to improve crop yield forecasting","volume":"253","author":"Mathieu","year":"2018","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.suscom.2020.100439_bib0060","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.compag.2018.05.012","article-title":"Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review","volume":"151","author":"Chlingaryan","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.suscom.2020.100439_bib0065","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.agrformet.2017.12.256","article-title":"Probabilistic maize yield prediction over East Africa using dynamic ensemble seasonal climate forecasts","volume":"250","author":"Ogutu","year":"2018","journal-title":"Agric. For. Meteorol."},{"issue":"7","key":"10.1016\/j.suscom.2020.100439_bib0070","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1080\/08839514.2019.1592343","article-title":"Performance evaluation of best feature subsets for crop yield prediction using machine learning algorithms","volume":"33","author":"PS","year":"2019","journal-title":"Appl. Artif. Intell."},{"issue":"1\u20132","key":"10.1016\/j.suscom.2020.100439_bib0075","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1007\/s10584-014-1067-6","article-title":"Evaluation of three simulation approaches for assessing yield of Rainfed sunflower in a Mediterranean environment for climate change impact modelling","volume":"124","author":"Garcia-Lopez","year":"2014","journal-title":"Clim. Change"},{"issue":"6","key":"10.1016\/j.suscom.2020.100439_bib0080","doi-asserted-by":"crossref","first-page":"982","DOI":"10.1109\/TSMC.2016.2627050","article-title":"A group decision making model for integrating heterogeneous information","volume":"48","author":"Li","year":"2016","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."},{"key":"10.1016\/j.suscom.2020.100439_bib0085","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.inffus.2017.02.004","article-title":"Ensemble learning for data stream analysis: a survey","volume":"37","author":"Krawczyk","year":"2017","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.suscom.2020.100439_bib0090","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1016\/j.renene.2016.12.095","article-title":"Machine learning methods for solar radiation forecasting: a review","volume":"105","author":"Voyant","year":"2017","journal-title":"Renew. Energy"},{"issue":"2","key":"10.1016\/j.suscom.2020.100439_bib0095","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.tplants.2015.10.015","article-title":"Machine learning for high-throughput stress phenotyping in plants","volume":"21","author":"Singh","year":"2016","journal-title":"Trends Plant Sci."},{"issue":"13","key":"10.1016\/j.suscom.2020.100439_bib0100","doi-asserted-by":"crossref","first-page":"1317","DOI":"10.1001\/jama.2017.18391","article-title":"Big data and machine learning in health care","volume":"319","author":"Beam","year":"2018","journal-title":"JAMA"},{"key":"10.1016\/j.suscom.2020.100439_bib0105","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.eswa.2017.12.020","article-title":"The use of machine learning algorithms in recommender systems: a systematic review","volume":"97","author":"Portugal","year":"2018","journal-title":"Expert Syst. Appl."},{"issue":"5","key":"10.1016\/j.suscom.2020.100439_bib0110","doi-asserted-by":"crossref","first-page":"716","DOI":"10.3846\/tede.2019.8740","article-title":"Machine learning methods for systemic risk analysis in financial sectors","volume":"25","author":"Kou","year":"2019","journal-title":"Technol. Econ. Dev. Econ."},{"issue":"01","key":"10.1016\/j.suscom.2020.100439_bib0115","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1142\/S0219622012500095","article-title":"Evaluation of classification algorithms using MCDM and rank correlation","volume":"11","author":"Kou","year":"2012","journal-title":"Int. J. Inf. Technol. Decis. Making"},{"key":"10.1016\/j.suscom.2020.100439_bib0120","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1016\/j.compag.2018.06.008","article-title":"Big data and machine learning for crop protection","volume":"151","author":"Ip","year":"2018","journal-title":"Comput. Electron. Agric."},{"issue":"5","key":"10.1016\/j.suscom.2020.100439_bib0125","doi-asserted-by":"crossref","DOI":"10.1515\/jib-2016-306","article-title":"Current progress of high-throughput MicroRNA differential expression analysis and random forest gene selection for model and non-model systems: an R implementation","volume":"13","author":"Zhang","year":"2016","journal-title":"J. Integr. Bioinf."},{"key":"10.1016\/j.suscom.2020.100439_bib0130","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/j.compag.2017.01.019","article-title":"Classification of agricultural soil parameters in India","volume":"135","author":"Sirsat","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.suscom.2020.100439_bib0135","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.envsoft.2012.08.011","article-title":"Prediction analysis of a wastewater treatment system using a Bayesian network","volume":"40","author":"Li","year":"2013","journal-title":"Environ. Model. Softw."},{"key":"10.1016\/j.suscom.2020.100439_bib0140","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1007\/978-3-319-12194-9_9","article-title":"Assessment of agricultural water management in Punjab, India, using Bayesian methods","author":"Russo","year":"2015","journal-title":"Sustainability of Integrated Water Resources Management"},{"key":"10.1016\/j.suscom.2020.100439_bib0145","series-title":"Guidelines for the Use of Bayesian Networks as a Participatory Tool for Water Resource Management","first-page":"117","author":"Bromley","year":"2005"},{"key":"10.1016\/j.suscom.2020.100439_bib0150","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1109\/SmartTechCon.2017.8358335","article-title":"A review on artificial intelligence techniques in electrical drives: neural networks, fuzzy logic, and genetic algorithm","author":"Sakunthala","year":"2017","journal-title":"2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon)"},{"issue":"2","key":"10.1016\/j.suscom.2020.100439_bib0155","doi-asserted-by":"crossref","first-page":"857","DOI":"10.1007\/s10462-017-9611-1","article-title":"Selecting training sets for support vector machines: a review","volume":"52","author":"Nalepa","year":"2019","journal-title":"Artif. Intell. Rev."},{"issue":"11","key":"10.1016\/j.suscom.2020.100439_bib0160","doi-asserted-by":"crossref","first-page":"950","DOI":"10.3923\/jas.2010.950.958","article-title":"A comparison of time series forecasting using support vector machine and artificial neural network model","volume":"10","author":"Samsudin","year":"2010","journal-title":"J. Appl. Sci."},{"key":"10.1016\/j.suscom.2020.100439_bib0165","doi-asserted-by":"crossref","first-page":"2314","DOI":"10.1155\/2015\/212715","article-title":"Prediction of antimicrobial peptides based on sequence alignment and support vector machine-pairwise algorithm utilizing LZ-complexity","volume":"2015","author":"Ng","year":"2015","journal-title":"BioMed Res. Int."},{"year":"2018","series-title":"Evaluation of Markov Chain Model for Forecasting Precipitation of Uttarakhand Districts","author":"Pranuthi","key":"10.1016\/j.suscom.2020.100439_bib0170"},{"key":"10.1016\/j.suscom.2020.100439_bib0175","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ins.2014.02.137","article-title":"Evaluation of clustering algorithms for financial risk analysis using MCDM methods","volume":"275","author":"Kou","year":"2014","journal-title":"Inf. Sci."},{"key":"10.1016\/j.suscom.2020.100439_bib0180","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.measurement.2018.09.032","article-title":"A novel digital analysis method for measuring and identifying of wool and cashmere fibers","volume":"132","author":"Xing","year":"2019","journal-title":"Measurement"},{"issue":"3\u20134","key":"10.1016\/j.suscom.2020.100439_bib0185","first-page":"163","article-title":"A scalable system for executing and scoring k-means clustering techniques and its impact on applications in agriculture","volume":"6","author":"Golubovic","year":"2019","journal-title":"Int. J. Big Data Intell."},{"key":"10.1016\/j.suscom.2020.100439_bib0190","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/j.compag.2018.04.001","article-title":"Agrodss: a decision support system for agriculture and farming","volume":"161","author":"Rupnik","year":"2019","journal-title":"Comput. Electron. Agric."},{"issue":"10","key":"10.1016\/j.suscom.2020.100439_bib0195","doi-asserted-by":"crossref","first-page":"1080","DOI":"10.1111\/jen.12698","article-title":"Determining the number of instars in potato tuber moth Phthorimaea operculella (zeller) using density-based dbscan clustering","volume":"143","author":"Zheng","year":"2019","journal-title":"J. Appl. Entomol."},{"key":"10.1016\/j.suscom.2020.100439_bib0200","series-title":"Computer and Computing Technologies in Agriculture IX, (Cham)","first-page":"317","article-title":"The application of the optics algorithm in the maize precise fertilization decision-making","author":"Wang","year":"2016"},{"key":"10.1016\/j.suscom.2020.100439_bib0205","article-title":"Unsupervised learning for crop\/weeds discrimination in maize fields with high weeds densities","author":"Montalvo","year":"2012","journal-title":"Int Conf of Agricultural Engineering (CIGR-Ag Eng 2012)"},{"key":"10.1016\/j.suscom.2020.100439_bib0210","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.rse.2018.12.026","article-title":"Crop type mapping without field-level labels: random forest transfer and unsupervised clustering techniques","volume":"222","author":"Wang","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.suscom.2020.100439_bib0215","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.ecolind.2018.01.026","article-title":"Is terrestrial water storage a useful indicator in assessing the impacts of climate variability on crop yield in semi-arid ecosystems?","volume":"88","author":"Ndehedehe","year":"2018","journal-title":"Ecol. Indic."},{"key":"10.1016\/j.suscom.2020.100439_bib0220","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.agrformet.2015.10.011","article-title":"Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions","volume":"216","author":"Park","year":"2016","journal-title":"Agric. For. Meteorol."},{"issue":"4","key":"10.1016\/j.suscom.2020.100439_bib0225","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.eaef.2018.08.003","article-title":"Automatic pest detection on bean and potato crops by applying neural classifiers","volume":"11","author":"Rold\u00e1n-Serrato","year":"2018","journal-title":"Eng. Agric. Environ. Food"},{"key":"10.1016\/j.suscom.2020.100439_bib0230","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.agsy.2016.07.006","article-title":"Modelling the sensitivity of agricultural systems to climate change and extreme climatic events","volume":"148","author":"Harrison","year":"2016","journal-title":"Agric. Syst."},{"key":"10.1016\/j.suscom.2020.100439_bib0235","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.compeleceng.2018.06.004","article-title":"Rainfall prediction for the Kerala state of India using artificial intelligence approaches","volume":"70","author":"Dash","year":"2018","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.suscom.2020.100439_bib0240","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1016\/j.isprsjprs.2018.03.014","article-title":"Early assessment of crop yield from remotely sensed water stress and solar radiation data","volume":"145","author":"Holzman","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"10.1016\/j.suscom.2020.100439_bib0245","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.agrformet.2017.02.011","article-title":"Meteorological drought forecasting for ungauged areas based on machine learning: using long-range climate forecast and remote sensing data","volume":"237","author":"Rhee","year":"2017","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.suscom.2020.100439_bib0250","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.compag.2017.04.016","article-title":"Nonlinear parametric modelling to study how soil properties affect crop yields and NDVI","volume":"138","author":"Whetton","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.suscom.2020.100439_bib0255","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/j.jterra.2018.02.003","article-title":"Comparison of soil strength measurements of agricultural soils in Nebraska","volume":"77","author":"Wieder","year":"2018","journal-title":"J. Terramech."},{"key":"10.1016\/j.suscom.2020.100439_bib0260","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.agrformet.2015.11.003","article-title":"Crop yield forecasting on the Canadian prairies by remotely sensed vegetation indices and machine learning methods","volume":"218","author":"Johnson","year":"2016","journal-title":"Agric. For. Meteorol."},{"key":"10.1016\/j.suscom.2020.100439_bib0265","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.rse.2018.02.045","article-title":"A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach","volume":"210","author":"Cai","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.suscom.2020.100439_bib0270","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.procs.2017.11.351","article-title":"Analysis of grain storage loss based on decision tree algorithm","volume":"122","author":"Liu","year":"2017","journal-title":"Proc. Comput. Sci."},{"issue":"6","key":"10.1016\/j.suscom.2020.100439_bib0275","doi-asserted-by":"crossref","first-page":"662","DOI":"10.1007\/s12355-017-0509-7","article-title":"Use of the decision tree technique to estimate sugarcane productivity under Edaphoclimatic conditions","volume":"19","author":"Neto","year":"2017","journal-title":"Sugar Tech."},{"key":"10.1016\/j.suscom.2020.100439_bib0280","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.wace.2018.01.001","article-title":"Australian climate extremes in the 21st century according to a regional climate model ensemble: implications for health and agriculture","volume":"20","author":"Herold","year":"2018","journal-title":"Weather Clim. Extremes"},{"issue":"16","key":"10.1016\/j.suscom.2020.100439_bib0285","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.ifacol.2016.10.076","article-title":"Identification of weeds in sugarcane fields through images taken by UAV and random forest classifier","volume":"49","author":"Yano","year":"2016","journal-title":"IFAC-PapersOnLine"},{"issue":"2","key":"10.1016\/j.suscom.2020.100439_bib0290","doi-asserted-by":"crossref","first-page":"793","DOI":"10.1007\/s13593-014-0279-5","article-title":"Management of wireworm damage in maize fields using new, landscape-scale strategies","volume":"35","author":"Saussure","year":"2015","journal-title":"Agron. Sustain. Dev."},{"issue":"10","key":"10.1016\/j.suscom.2020.100439_bib0295","doi-asserted-by":"crossref","first-page":"1863","DOI":"10.1007\/s00484-017-1372-7","article-title":"Spatiotemporal analysis the precipitation extremes affecting rice yield in Jiangsu Province, Southeast China","volume":"61","author":"Huang","year":"2017","journal-title":"Int. J. Biometeorol."},{"key":"10.1016\/j.suscom.2020.100439_bib0300","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1016\/j.procs.2018.05.001","article-title":"Rnns-rt: flood based prediction of human and animal deaths in Bihar using recurrent neural networks and regression techniques","volume":"132","author":"Khosla","year":"2018","journal-title":"Proc. Comput. Sci."},{"key":"10.1016\/j.suscom.2020.100439_bib0305","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1109\/ICACCI.2018.8554948","article-title":"Crop prediction on the region belts of India: a Na\u00efve bayes mapreduce precision agricultural model","author":"Priya","year":"2018","journal-title":"2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI)"}],"container-title":["Sustainable Computing: Informatics and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210537920301669?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2210537920301669?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,18]],"date-time":"2022-07-18T10:00:18Z","timestamp":1658138418000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2210537920301669"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,12]]},"references-count":61,"alternative-id":["S2210537920301669"],"URL":"https:\/\/doi.org\/10.1016\/j.suscom.2020.100439","relation":{},"ISSN":["2210-5379"],"issn-type":[{"type":"print","value":"2210-5379"}],"subject":[],"published":{"date-parts":[[2020,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"ML based sustainable precision agriculture: A future generation perspective","name":"articletitle","label":"Article Title"},{"value":"Sustainable Computing: Informatics and Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.suscom.2020.100439","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"100439"}}