{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T11:44:38Z","timestamp":1720784678098},"reference-count":17,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,8]],"date-time":"2023-03-08T00:00:00Z","timestamp":1678233600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100004837","name":"Ministerio de Ciencia e Innovaci\u00f3n","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004837","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100014440","name":"Espa\u00f1a Ministerio de Ciencia Innovaci\u00f3n y Universidades","doi-asserted-by":"publisher","award":["PID2020-113969RB-I00"],"id":[{"id":"10.13039\/100014440","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["softxjournal.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["SoftwareX"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.softx.2023.101363","type":"journal-article","created":{"date-parts":[[2023,3,17]],"date-time":"2023-03-17T05:14:03Z","timestamp":1679030043000},"page":"101363","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["tegdet: An extensible Python library for anomaly detection using time evolving graphs"],"prefix":"10.1016","volume":"22","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-2605-6243","authenticated-orcid":false,"given":"Simona","family":"Bernardi","sequence":"first","affiliation":[]},{"given":"Ra\u00fal","family":"Javierre","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5538-3553","authenticated-orcid":false,"given":"Jos\u00e9","family":"Merseguer","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.softx.2023.101363_b1","series-title":"Time series analysis and its applications","author":"Shumway","year":"2017"},{"issue":"1","key":"10.1016\/j.softx.2023.101363_b2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/00401706.1969.10490657","article-title":"Procedures for detecting outlying observations in samples","volume":"11","author":"Grubbs","year":"1969","journal-title":"Technometrics"},{"key":"10.1016\/j.softx.2023.101363_b3","series-title":"Anomaly detection in univariate time-series: A survey on the state-of-the-art","author":"Braei","year":"2020"},{"issue":"3","key":"10.1016\/j.softx.2023.101363_b4","doi-asserted-by":"crossref","DOI":"10.1145\/3444690","article-title":"A review on outlier\/anomaly detection in time series data","volume":"54","author":"Bl\u00e1zquez-Garc\u00eda","year":"2021","journal-title":"ACM Comput Surv"},{"issue":"3","key":"10.1016\/j.softx.2023.101363_b5","doi-asserted-by":"crossref","first-page":"626","DOI":"10.1007\/s10618-014-0365-y","article-title":"Graph based anomaly detection and description: A survey","volume":"29","author":"Akoglu","year":"2015","journal-title":"Data Min Knowl Discov"},{"key":"10.1016\/j.softx.2023.101363_b6","series-title":"Proceedings of the 2007 USENIX annual technical conference, Santa Clara, CA, USA, June (2007) 17-22","article-title":"Python programming language","author":"van Rossum","year":"2007"},{"key":"10.1016\/j.softx.2023.101363_b7","series-title":"R: A language and environment for statistical computing","author":"R Core Team","year":"2018"},{"issue":"4","key":"10.1016\/j.softx.2023.101363_b8","first-page":"300","article-title":"Comprehensive survey on distance\/similarity measures between probability density functions","volume":"1","author":"Cha","year":"2007","journal-title":"Int J Math Models Methods Appl Sci"},{"key":"10.1016\/j.softx.2023.101363_b9","series-title":"Tegdet: An extensible python library for anomaly detection using time-evolving graphs","author":"Bernardi","year":"2022"},{"key":"10.1016\/j.softx.2023.101363_b10","series-title":"Computers in cardiology","first-page":"673","article-title":"A database for evaluation of algorithms for measurement of qt and other waveform intervals in the ecg","author":"Laguna","year":"1997"},{"key":"10.1016\/j.softx.2023.101363_b11","series-title":"GrammarViz GitHub repository","author":"Pavel Senin","year":"2022"},{"issue":"1","key":"10.1016\/j.softx.2023.101363_b12","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1049\/iet-cps.2016.0019","article-title":"Cyber-physical attacks and defences in the smart grid: a survey","volume":"1","author":"He","year":"2016","journal-title":"IET Cyber-Phys Syst: Theory Appl"},{"key":"10.1016\/j.softx.2023.101363_b13","doi-asserted-by":"crossref","unstructured":"Krishna VB, Lee K, Weaver GA, Iyer RK, Sanders WH. F-DETA: A framework for detecting electricity theft attacks in smart grids. In: 2016 46th Annual IEEE\/IFIP international conference on dependable systems and networks (DSN), 2016, p. 407\u201318.","DOI":"10.1109\/DSN.2016.44"},{"key":"10.1016\/j.softx.2023.101363_b14","series-title":"Irish social science data archive, commission for energy regulation","year":"2012"},{"key":"10.1016\/j.softx.2023.101363_b15","series-title":"17th European dependable computing conference, EDCC 2021, Munich Germany, September (2021) 13-16","article-title":"Detectors of smart grid integrity attacks: an experimental assessment","author":"Bernardi","year":"2021"},{"key":"10.1016\/j.softx.2023.101363_b16","series-title":"Model & data-driven resilience engineering for complex dynamic systems (medrese)","author":"Bernardi","year":"2019"},{"key":"10.1016\/j.softx.2023.101363_b17","series-title":"Google bigquery analytics","author":"Naidu","year":"2014"}],"container-title":["SoftwareX"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2352711023000596?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2352711023000596?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T13:15:43Z","timestamp":1709298943000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2352711023000596"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":17,"alternative-id":["S2352711023000596"],"URL":"https:\/\/doi.org\/10.1016\/j.softx.2023.101363","relation":{},"ISSN":["2352-7110"],"issn-type":[{"value":"2352-7110","type":"print"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"tegdet: An extensible Python library for anomaly detection using time evolving graphs","name":"articletitle","label":"Article Title"},{"value":"SoftwareX","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.softx.2023.101363","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"simple-article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"101363"}}