{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T16:59:15Z","timestamp":1732035555315},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,5,1]],"date-time":"2015-05-01T00:00:00Z","timestamp":1430438400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Simulation Modelling Practice and Theory"],"published-print":{"date-parts":[[2015,5]]},"DOI":"10.1016\/j.simpat.2015.03.004","type":"journal-article","created":{"date-parts":[[2015,4,6]],"date-time":"2015-04-06T13:05:20Z","timestamp":1428325520000},"page":"101-115","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Regressor selection for ozone prediction"],"prefix":"10.1016","volume":"54","author":[{"given":"Ju\u0161","family":"Kocijan","sequence":"first","affiliation":[]},{"given":"Marko","family":"Han\u010di\u010d","sequence":"additional","affiliation":[]},{"given":"Dejan","family":"Petelin","sequence":"additional","affiliation":[]},{"given":"Marija Zlata","family":"Bo\u017enar","sequence":"additional","affiliation":[]},{"given":"Primo\u017e","family":"Mlakar","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.simpat.2015.03.004_b0005","unstructured":"Guideline for Developing An Ozone Forecasting Program, Tech. Rep. EPA-454\/R-99-009, United States Environmental Protection Agency, 1999."},{"key":"10.1016\/j.simpat.2015.03.004_b0010","doi-asserted-by":"crossref","first-page":"396","DOI":"10.1016\/j.envsoft.2006.08.007","article-title":"Combining principal component regression and artificial neural-networks for more accurate predictions of ground-level ozone","volume":"23","author":"Al-Alawi","year":"2008","journal-title":"Environ. Model. Softw."},{"key":"10.1016\/j.simpat.2015.03.004_b0015","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1007\/s10661-009-0785-0","article-title":"Prediction of daily maximum ground ozone concentration using support vector machine","volume":"162","author":"Chelani","year":"2010","journal-title":"Environ. Monit. Assess."},{"key":"10.1016\/j.simpat.2015.03.004_b0020","doi-asserted-by":"crossref","first-page":"2016","DOI":"10.1016\/j.camwa.2011.06.044","article-title":"Predicting daily ozone concentration maxima using fuzzy time series based on a two-stage linguistic partition method","author":"Cheng","year":"2011","journal-title":"Comput. Math. Appl."},{"key":"10.1016\/j.simpat.2015.03.004_b0025","doi-asserted-by":"crossref","first-page":"1379","DOI":"10.1016\/j.chemosphere.2005.04.079","article-title":"Stochastic model to forecast ground-level ozone concentration at urban and rural areas","volume":"61","author":"Duenas","year":"2005","journal-title":"Chemosphere"},{"key":"10.1016\/j.simpat.2015.03.004_b0030","doi-asserted-by":"crossref","first-page":"1979","DOI":"10.1016\/j.atmosenv.2011.01.022","article-title":"Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and SVM data classification","volume":"45","author":"Feng","year":"2011","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.simpat.2015.03.004_b0035","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.scitotenv.2014.04.077","article-title":"Can artificial neural networks be used to predict the origin of ozone episodes?","volume":"488\u2013489","author":"Fontes","year":"2014","journal-title":"Sci. Total Environ."},{"key":"10.1016\/j.simpat.2015.03.004_b0040","doi-asserted-by":"crossref","first-page":"517","DOI":"10.1016\/j.atmosenv.2013.09.020","article-title":"Ensemble statistical post-processing of the national air quality forecast capability: enhancing ozone forecasts in Baltimore","volume":"81","author":"Garner","year":"2013","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.simpat.2015.03.004_b0045","doi-asserted-by":"crossref","first-page":"3502","DOI":"10.1016\/j.atmosenv.2006.11.060","article-title":"Fuzzy system models combined with nonlinear regression for daily ground-level ozone predictions","volume":"41","author":"Lin","year":"2007","journal-title":"Atmos. Environ."},{"key":"10.1016\/j.simpat.2015.03.004_b0050","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2012\/894714","article-title":"Application of multiple linear regression models and artificial neural networks on the surface ozone forecast in the greater Athens area, Greece","volume":"2012","author":"Moustris","year":"2012","journal-title":"Adv. Meteorol."},{"key":"10.1016\/j.simpat.2015.03.004_b0055","doi-asserted-by":"crossref","first-page":"12343","DOI":"10.5194\/acpd-8-12343-2008","article-title":"Ozone prediction based on meteorological variables: a fuzzy inductive reasoning approach","volume":"8","author":"Nebot","year":"2008","journal-title":"Atmos. Chem. Phys. Discuss."},{"issue":"1","key":"10.1016\/j.simpat.2015.03.004_b0060","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.simpat.2012.04.005","article-title":"Evolving Gaussian process models for the prediction of ozone concentration in the air","volume":"33","author":"Petelin","year":"2013","journal-title":"Simulat. Model. Pract. Theory"},{"key":"10.1016\/j.simpat.2015.03.004_b0065","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1007\/s11869-008-0023-x","article-title":"Ground-level ozone forecasting using data-driven methods","volume":"1","author":"Solaiman","year":"2008","journal-title":"Air Qual. Atmos. Health"},{"key":"10.1016\/j.simpat.2015.03.004_b0070","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1007\/s10479-012-1163-9","article-title":"A data-integrated simulation model to forecast ground-level ozone concentration","volume":"216","author":"Sundaramoorthi","year":"2014","journal-title":"Ann. Oper. Res."},{"key":"10.1016\/j.simpat.2015.03.004_b0075","series-title":"Elements of Environmental Chemistry","author":"Hites","year":"2007"},{"issue":"3","key":"10.1016\/j.simpat.2015.03.004_b0080","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1016\/j.envpol.2006.08.028","article-title":"Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective","volume":"147","author":"Bytnerowicz","year":"2006","journal-title":"Environ. Pollut."},{"key":"10.1016\/j.simpat.2015.03.004_b0085","unstructured":"Directive 2008\/50\/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. ."},{"key":"10.1016\/j.simpat.2015.03.004_b0090","doi-asserted-by":"crossref","unstructured":"R. May, G. Dandy, H. Maier, Artificial Neural Networks \u2013 Methodological Advances and Biomedical Applications, InTech, Rijeka, 2011, pp. 19\u201344 (Chapter Review of Input Variable Selection Methods for Artificial Neural Networks).","DOI":"10.5772\/16004"},{"key":"10.1016\/j.simpat.2015.03.004_b0095","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/S0004-3702(97)00063-5","article-title":"Selection of relevant features and examples in machine learning","volume":"97","author":"Blum","year":"1997","journal-title":"Artif. Intell."},{"key":"10.1016\/j.simpat.2015.03.004_b0100","first-page":"1157","article-title":"An introduction to variable and feature selection","volume":"3","author":"Guyon","year":"2003","journal-title":"J. Mach. Learn. Res."},{"issue":"1\u20132","key":"10.1016\/j.simpat.2015.03.004_b0105","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","article-title":"Wrappers for feature subset selection","volume":"97","author":"Kohavi","year":"1997","journal-title":"Artif. Intell."},{"key":"10.1016\/j.simpat.2015.03.004_b0110","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1016\/j.automatica.2004.11.017","article-title":"Regressor selection with the analysis of variance method","volume":"41","author":"Lind","year":"2005","journal-title":"Automatica"},{"issue":"9\u201312","key":"10.1016\/j.simpat.2015.03.004_b0115","doi-asserted-by":"crossref","first-page":"2743","DOI":"10.1007\/s00170-013-4840-1","article-title":"Input variable selection for model-based production control and optimisation","volume":"68","author":"Glavan","year":"2013","journal-title":"Int. J. Adv. Manuf. Technol."},{"issue":"6","key":"10.1016\/j.simpat.2015.03.004_b0120","doi-asserted-by":"crossref","first-page":"2769","DOI":"10.1214\/009053607000000505","article-title":"Measuring and testing dependence by correlation of distances","volume":"35","author":"Szekely","year":"2007","journal-title":"Ann. Stat."},{"key":"10.1016\/j.simpat.2015.03.004_b0125","first-page":"1415","article-title":"Feature extraction by non-parametric mutual information maximization","volume":"3","author":"Torkkola","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.simpat.2015.03.004_b0130","doi-asserted-by":"crossref","first-page":"204101-1","DOI":"10.1103\/PhysRevLett.99.204101","article-title":"Partial mutual information for coupling analysis of multivariate time series","volume":"99","author":"Frenzel","year":"2007","journal-title":"Phys. Rev. Lett."},{"issue":"1","key":"10.1016\/j.simpat.2015.03.004_b0135","doi-asserted-by":"crossref","first-page":"762","DOI":"10.1016\/j.neucom.2006.10.011","article-title":"Neural input selection \u2013 a fast model-based approach","volume":"70","author":"Li","year":"2007","journal-title":"Neurocomputation"},{"key":"10.1016\/j.simpat.2015.03.004_b0140","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1007\/11875581_27","article-title":"Intelligent data engineering and automated learning","volume":"vol. 4224","author":"Niska","year":"2006"},{"key":"10.1016\/j.simpat.2015.03.004_b0145","series-title":"Gaussian Processes for Machine Learning","author":"Rasmussen","year":"2006"},{"key":"10.1016\/j.simpat.2015.03.004_b0150","unstructured":"R.M. van Aalst, F.A.A.M. de Leeuw, National Ozone Forecasting System and International Data Exchange in Northwest Europe, European Topic Centre on Air Quality, Tech. Rep. 9, European Environment Agency, 1998."},{"key":"10.1016\/j.simpat.2015.03.004_b0155","series-title":"Proceedings of Intelligent Information Systems IIS97, Grand Bahama Island, Bahamas","first-page":"350","article-title":"Determination of features for air pollution forecasting models","author":"Mlakar","year":"1997"},{"key":"10.1016\/j.simpat.2015.03.004_b0160","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1016\/j.isatra.2007.04.001","article-title":"Application of Gaussian processes for black-box modelling of biosystems","volume":"46","author":"A\u017eman","year":"2007","journal-title":"ISA Trans."},{"key":"10.1016\/j.simpat.2015.03.004_b0165","series-title":"Gaussian Process Regression Analysis for Functional Data","author":"Shi","year":"2011"},{"key":"10.1016\/j.simpat.2015.03.004_b0170","series-title":"Neural Networks and Machine Learning, NATO ASI Series","first-page":"133","article-title":"Introduction to Gaussian processes","author":"MacKay","year":"1998"},{"issue":"8","key":"10.1016\/j.simpat.2015.03.004_b0175","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1016\/j.simpat.2008.05.007","article-title":"Gas\u2013liquid separator modelling and simulation with Gaussian-process models","volume":"16","author":"Kocijan","year":"2008","journal-title":"Simulat. Model. Pract. Theory"}],"container-title":["Simulation Modelling Practice and Theory"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569190X15000453?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1569190X15000453?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,23]],"date-time":"2019-08-23T00:57:12Z","timestamp":1566521832000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1569190X15000453"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,5]]},"references-count":35,"alternative-id":["S1569190X15000453"],"URL":"https:\/\/doi.org\/10.1016\/j.simpat.2015.03.004","relation":{},"ISSN":["1569-190X"],"issn-type":[{"value":"1569-190X","type":"print"}],"subject":[],"published":{"date-parts":[[2015,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Regressor selection for ozone prediction","name":"articletitle","label":"Article Title"},{"value":"Simulation Modelling Practice and Theory","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.simpat.2015.03.004","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2015 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}