{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T23:47:07Z","timestamp":1740181627204,"version":"3.37.3"},"reference-count":25,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,8,1]],"date-time":"2021-08-01T00:00:00Z","timestamp":1627776000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,5,29]],"date-time":"2021-05-29T00:00:00Z","timestamp":1622246400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100005627","name":"Universit\u00e9 de Li\u00e8ge","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005627","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["softwareimpacts.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Software Impacts"],"published-print":{"date-parts":[[2021,8]]},"DOI":"10.1016\/j.simpa.2021.100092","type":"journal-article","created":{"date-parts":[[2021,6,2]],"date-time":"2021-06-02T17:58:56Z","timestamp":1622656736000},"page":"100092","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Gym-ANM: Open-source software to leverage reinforcement learning for power system management in research and education"],"prefix":"10.1016","volume":"9","author":[{"given":"Robin","family":"Henry","sequence":"first","affiliation":[]},{"given":"Damien","family":"Ernst","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.simpa.2021.100092_b1","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1109\/TPWRS.2013.2279263","article-title":"Dynamic optimal power flow for active distribution networks","volume":"29","author":"Gill","year":"2013","journal-title":"IEEE Trans. Power Syst."},{"issue":"12","key":"10.1016\/j.simpa.2021.100092_b2","doi-asserted-by":"crossref","first-page":"4346","DOI":"10.1016\/j.enpol.2008.09.038","article-title":"Adaptive intelligent power systems: Active distribution networks","volume":"36","author":"McDonald","year":"2008","journal-title":"Energy Policy"},{"year":"2013","author":"Mnih","series-title":"Playing atari with deep reinforcement learning","key":"10.1016\/j.simpa.2021.100092_b3"},{"issue":"7540","key":"10.1016\/j.simpa.2021.100092_b4","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1038\/nature14236","article-title":"Human-level control through deep reinforcement learning","volume":"518","author":"Mnih","year":"2015","journal-title":"Nature"},{"issue":"7587","key":"10.1016\/j.simpa.2021.100092_b5","doi-asserted-by":"crossref","first-page":"484","DOI":"10.1038\/nature16961","article-title":"Mastering the game of go with deep neural networks and tree search","volume":"529","author":"Silver","year":"2016","journal-title":"Nature"},{"issue":"7782","key":"10.1016\/j.simpa.2021.100092_b6","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1038\/s41586-019-1724-z","article-title":"Grandmaster level in StarCraft II using multi-agent reinforcement learning","volume":"575","author":"Vinyals","year":"2019","journal-title":"Nature"},{"issue":"1\u20132","key":"10.1016\/j.simpa.2021.100092_b7","first-page":"1","article-title":"A survey on policy search for robotics","volume":"2","author":"Deisenroth","year":"2013","journal-title":"Found. Trend. Robot."},{"issue":"3","key":"10.1016\/j.simpa.2021.100092_b8","doi-asserted-by":"crossref","first-page":"122","DOI":"10.3390\/robotics2030122","article-title":"Reinforcement learning in robotics: Applications and real-world challenges","volume":"2","author":"Kormushev","year":"2013","journal-title":"Robotics"},{"issue":"11","key":"10.1016\/j.simpa.2021.100092_b9","doi-asserted-by":"crossref","first-page":"1238","DOI":"10.1177\/0278364913495721","article-title":"Reinforcement learning in robotics: A survey","volume":"32","author":"Kober","year":"2013","journal-title":"Int. J. Robot. Res."},{"key":"10.1016\/j.simpa.2021.100092_b10","series-title":"2017 IEEE International Conference on Robotics and Automation (ICRA)","first-page":"3389","article-title":"Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates","author":"Gu","year":"2017"},{"issue":"19","key":"10.1016\/j.simpa.2021.100092_b11","doi-asserted-by":"crossref","first-page":"70","DOI":"10.2352\/ISSN.2470-1173.2017.19.AVM-023","article-title":"Deep reinforcement learning framework for autonomous driving","volume":"2017","author":"Sallab","year":"2017","journal-title":"Electron. Imaging"},{"key":"10.1016\/j.simpa.2021.100092_b12","series-title":"Advances in Neural Information Processing Systems","first-page":"9827","article-title":"Scalable end-to-end autonomous vehicle testing via rare-event simulation","author":"O\u2019Kelly","year":"2018"},{"issue":"2","key":"10.1016\/j.simpa.2021.100092_b13","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/MCI.2019.2901089","article-title":"Reinforcement learning and deep learning based lateral control for autonomous driving [application notes]","volume":"14","author":"Li","year":"2019","journal-title":"IEEE Comput. Intell. Magaz."},{"year":"2021","author":"Henry","series-title":"Gym-ANM: Reinforcement learning environments for active network management tasks in electricity distribution systems","key":"10.1016\/j.simpa.2021.100092_b14"},{"issue":"1","key":"10.1016\/j.simpa.2021.100092_b15","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1109\/TPWRS.2010.2051168","article-title":"MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education","volume":"26","author":"Zimmerman","year":"2010","journal-title":"IEEE Trans. Power Syst."},{"issue":"6","key":"10.1016\/j.simpa.2021.100092_b16","doi-asserted-by":"crossref","first-page":"6510","DOI":"10.1109\/TPWRS.2018.2829021","article-title":"Pandapower \u2014 An open-source python tool for convenient modeling, analysis, and optimization of electric power systems","volume":"33","author":"Thurner","year":"2018","journal-title":"IEEE Trans. Power Syst."},{"year":"2016","author":"Brockman","series-title":"Openai gym","key":"10.1016\/j.simpa.2021.100092_b17"},{"year":"2014","author":"Gonzalez-Longatt","series-title":"PowerFactory Applications for Power System Analysis","key":"10.1016\/j.simpa.2021.100092_b18"},{"key":"10.1016\/j.simpa.2021.100092_b19","series-title":"IEE Colloquium on Interactive Graphic Power System Analysis Programs","article-title":"ERACS-a comprehensive package for PCs","author":"Langley","year":"1992"},{"key":"10.1016\/j.simpa.2021.100092_b20","series-title":"Conference Record of the 1990 IEEE Industry Applications Society Annual Meeting","first-page":"1930","article-title":"Interactive simulation of power systems: ETAP applications and techniques","author":"Brown","year":"1990"},{"unstructured":"TNEI, Interactive Power System Analysis (IPSA) software, https:\/\/www.ipsa-power.com, (Accessed on 05\/12\/2021).","key":"10.1016\/j.simpa.2021.100092_b21"},{"unstructured":"PowerWorld Corporation, PowerWorld software, https:\/\/www.powerworld.com, (Accessed on 05\/12\/2021).","key":"10.1016\/j.simpa.2021.100092_b22"},{"issue":"3","key":"10.1016\/j.simpa.2021.100092_b23","doi-asserted-by":"crossref","first-page":"1199","DOI":"10.1109\/TPWRS.2005.851911","article-title":"An open source power system analysis toolbox","volume":"20","author":"Milano","year":"2005","journal-title":"IEEE Trans. Power Syst."},{"unstructured":"R. Lincoln, PYPOWER library, https:\/\/github.com\/rwl\/PYPOWER, (Accessed on 05\/12\/2021).","key":"10.1016\/j.simpa.2021.100092_b24"},{"unstructured":"D. Ernst, Optimal decision making for complex problems course at the University of Li\u00e8ge, http:\/\/blogs.ulg.ac.be\/damien-ernst\/info8003-1-optimal-decision-making-for-complex-problems, (Accessed on 05\/13\/2021).","key":"10.1016\/j.simpa.2021.100092_b25"}],"container-title":["Software Impacts"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2665963821000348?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2665963821000348?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,7,24]],"date-time":"2022-07-24T11:37:15Z","timestamp":1658662635000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2665963821000348"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,8]]},"references-count":25,"alternative-id":["S2665963821000348"],"URL":"https:\/\/doi.org\/10.1016\/j.simpa.2021.100092","relation":{},"ISSN":["2665-9638"],"issn-type":[{"type":"print","value":"2665-9638"}],"subject":[],"published":{"date-parts":[[2021,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Gym-ANM: Open-source software to leverage reinforcement learning for power system management in research and education","name":"articletitle","label":"Article Title"},{"value":"Software Impacts","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.simpa.2021.100092","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"simple-article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}],"article-number":"100092"}}