{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,26]],"date-time":"2024-10-26T18:10:08Z","timestamp":1729966208533,"version":"3.28.0"},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["12001 005","12271083","61806134","62076170"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Signal Processing"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.sigpro.2023.109226","type":"journal-article","created":{"date-parts":[[2023,8,23]],"date-time":"2023-08-23T22:35:45Z","timestamp":1692830145000},"page":"109226","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["Denoiser-guided image deconvolution with arbitrary boundaries and incomplete observations"],"prefix":"10.1016","volume":"214","author":[{"given":"Liangtian","family":"He","sequence":"first","affiliation":[]},{"given":"Shaobing","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Liang-Jian","family":"Deng","sequence":"additional","affiliation":[]},{"given":"Yilun","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chao","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.sigpro.2023.109226_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2023.109108","article-title":"Deep semantic-aware remote sensing image deblurring","author":"Song","year":"2023","journal-title":"Signal Process."},{"key":"10.1016\/j.sigpro.2023.109226_b2","unstructured":"W. Ren, J. Zhang, L. Ma, et al., Deep non-blind deconvolution via generalized low-rank approximation, in: Proc. NeurIPS, 2018, p. 31."},{"key":"10.1016\/j.sigpro.2023.109226_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2023.109117","article-title":"Overlapping group prior for image deconvolution using patch-wise gradient statistics","author":"Lee","year":"2023","journal-title":"Signal Process."},{"key":"10.1016\/j.sigpro.2023.109226_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2022.108734","article-title":"Blind deconvolution with non-smooth regularization via bregman proximal DCAs","volume":"202","author":"Takahashi","year":"2023","journal-title":"Signal Process."},{"issue":"4","key":"10.1016\/j.sigpro.2023.109226_b5","doi-asserted-by":"crossref","first-page":"1715","DOI":"10.1109\/TIP.2011.2176954","article-title":"BM3D frames and variational image deblurring","volume":"21","author":"Danielyan","year":"2012","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.sigpro.2023.109226_b6","doi-asserted-by":"crossref","first-page":"1620","DOI":"10.1109\/TIP.2012.2235847","article-title":"Nonlocally centralized sparse representation for image restoration","volume":"22","author":"Dong","year":"2013","journal-title":"IEEE Trans. Image Process."},{"issue":"8","key":"10.1016\/j.sigpro.2023.109226_b7","doi-asserted-by":"crossref","first-page":"3336","DOI":"10.1109\/TIP.2014.2323127","article-title":"Group-based sparse representation for image restoration","volume":"23","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.sigpro.2023.109226_b8","doi-asserted-by":"crossref","first-page":"731","DOI":"10.1109\/TMM.2018.2866362","article-title":"Adjusted non-local regression and directional smoothness for image restoration","volume":"21","author":"Ren","year":"2018","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.sigpro.2023.109226_b9","doi-asserted-by":"crossref","first-page":"8561","DOI":"10.1109\/TIP.2020.3015545","article-title":"Image restoration via simultaneous nonlocal self-similarity priors","volume":"29","author":"Zha","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2023.109226_b10","doi-asserted-by":"crossref","first-page":"5819","DOI":"10.1109\/TIP.2021.3086049","article-title":"Triply complementary priors for image restoration","volume":"30","author":"Zha","year":"2021","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2023.109226_b11","doi-asserted-by":"crossref","first-page":"5310","DOI":"10.1109\/TIP.2020.2980753","article-title":"Image recovery via transform learning and low-rank modeling: The power of complementary regularizers","volume":"29","author":"Wen","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2023.109226_b12","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/j.ins.2018.12.005","article-title":"Support driven wavelet frame-based image deblurring","volume":"479","author":"He","year":"2019","journal-title":"Inform. Sci."},{"key":"10.1016\/j.sigpro.2023.109226_b13","doi-asserted-by":"crossref","unstructured":"C.J. Schuler, H.C. Burger, S. Harmeling, et al., A machine learning approach for non-blind image deconvolution, in: Proc. IEEE CVPR, 2013, pp. 1067\u20131074.","DOI":"10.1109\/CVPR.2013.142"},{"issue":"6","key":"10.1016\/j.sigpro.2023.109226_b14","doi-asserted-by":"crossref","first-page":"1256","DOI":"10.1109\/TPAMI.2016.2596743","article-title":"Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration","volume":"39","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"6","key":"10.1016\/j.sigpro.2023.109226_b15","doi-asserted-by":"crossref","first-page":"2897","DOI":"10.1109\/TIP.2018.2815084","article-title":"Training very deep CNNs for general non-blind deconvolution","volume":"27","author":"Wang","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2023.109226_b16","doi-asserted-by":"crossref","unstructured":"T. Eboli, J. Sun, J. Ponce, End-to-end interpretable learning of non-blind image deblurring, in: Proc. IEEE ECCV, 2020, pp. 314\u2013331.","DOI":"10.1007\/978-3-030-58520-4_19"},{"issue":"10","key":"10.1016\/j.sigpro.2023.109226_b17","doi-asserted-by":"crossref","first-page":"5387","DOI":"10.1109\/TNNLS.2021.3070596","article-title":"Nonblind image deblurring via deep learning in complex field","volume":"33","author":"Quan","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.sigpro.2023.109226_b18","doi-asserted-by":"crossref","unstructured":"K. Zhang, W. Zuo, S. Gu, L. Zhang, Learning deep CNN denoiser prior for image restoration, in: Proc. IEEE CVPR, 2017, pp. 3929\u20133938.","DOI":"10.1109\/CVPR.2017.300"},{"issue":"10","key":"10.1016\/j.sigpro.2023.109226_b19","doi-asserted-by":"crossref","first-page":"1448","DOI":"10.1109\/TIP.2005.854474","article-title":"Fast image restoration without boundary artifacts","volume":"14","author":"Reeves","year":"2005","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.sigpro.2023.109226_b20","doi-asserted-by":"crossref","first-page":"2329","DOI":"10.1109\/TIP.2011.2176344","article-title":"Removing boundary artifacts for real-time iterated shrinkage deconvolution","volume":"21","author":"Sorel","year":"2012","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2023.109226_b21","doi-asserted-by":"crossref","first-page":"2244","DOI":"10.1016\/j.laa.2009.12.021","article-title":"Synthetic boundary conditions for image deblurring","volume":"434","author":"Fan","year":"2011","journal-title":"Linear Algebra Appl."},{"key":"10.1016\/j.sigpro.2023.109226_b22","doi-asserted-by":"crossref","first-page":"851","DOI":"10.1137\/S1064827598341384","article-title":"A fast algorithm for deblurring models with Neumann boundary conditions","volume":"21","author":"Ng","year":"1999","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.sigpro.2023.109226_b23","doi-asserted-by":"crossref","first-page":"1307","DOI":"10.1137\/S1064827502410244","article-title":"A note on antireflective boundary conditions and fast deblurring models","volume":"25","author":"Serra-Capizzano","year":"2003","journal-title":"SIAM J. Sci. Comput."},{"key":"10.1016\/j.sigpro.2023.109226_b24","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.ins.2011.09.026","article-title":"Kronecker product approximations for image restoration with whole-sample symmetric boundary conditions","volume":"186","author":"Lv","year":"2012","journal-title":"Inform. Sci."},{"key":"10.1016\/j.sigpro.2023.109226_b25","unstructured":"R. Liu, J. Jia, Reducing boundary artifacts in image deconvolution, in: Proc. IEEE ICIP, 2008."},{"key":"10.1016\/j.sigpro.2023.109226_b26","doi-asserted-by":"crossref","first-page":"2035","DOI":"10.1088\/0266-5611\/22\/6\/008","article-title":"Improved image deblurring with anti-reflective boundary conditions and re-blurring","volume":"22","author":"Donatelli","year":"2006","journal-title":"Inverse Problems"},{"issue":"3","key":"10.1016\/j.sigpro.2023.109226_b27","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1137\/100816213","article-title":"Fast preconditioners for total variation deblurring with antireflective boundary conditions","volume":"32","author":"Bai","year":"2011","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"10.1016\/j.sigpro.2023.109226_b28","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.cam.2013.10.028","article-title":"A boundary condition based deconvolution framework for image deblurring","volume":"261","author":"Zhou","year":"2014","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.sigpro.2023.109226_b29","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/j.jmaa.2014.01.061","article-title":"A fast alternating minimization algorithm for total variation deblurring without boundary artifacts","volume":"415","author":"Bai","year":"2014","journal-title":"J. Math. Anal. Appl."},{"issue":"8","key":"10.1016\/j.sigpro.2023.109226_b30","doi-asserted-by":"crossref","first-page":"3074","DOI":"10.1109\/TIP.2013.2258354","article-title":"Deconvolving images with unknown boundaries using the alternating direction method of multipliers","volume":"22","author":"Almeida","year":"2013","journal-title":"IEEE Trans. Image Process."},{"issue":"5","key":"10.1016\/j.sigpro.2023.109226_b31","doi-asserted-by":"crossref","first-page":"2019","DOI":"10.1109\/TIP.2013.2244218","article-title":"Accelerated edge-preserving image restoration without boundary artifacts","volume":"22","author":"Matakos","year":"2013","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.sigpro.2023.109226_b32","doi-asserted-by":"crossref","first-page":"5266","DOI":"10.1109\/TIP.2016.2603920","article-title":"A framework for fast image deconvolution with incomplete observations","volume":"25","author":"Sim\u00f5es","year":"2016","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2023.109226_b33","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1109\/TIP.2009.2037087","article-title":"Is denoising dead?","volume":"19","author":"Chatterjee","year":"2009","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2023.109226_b34","doi-asserted-by":"crossref","unstructured":"A. Levin, B. Nadler, Natural image denoising: Optimality and inherent bounds, in: Proc. IEEE CVPR, 2011, pp. 2833\u20132840.","DOI":"10.1109\/CVPR.2011.5995309"},{"key":"10.1016\/j.sigpro.2023.109226_b35","doi-asserted-by":"crossref","unstructured":"S.V. Venkatakrishnan, C.A. Bouman, B. Wohlberg, Plug-and-play priors for model based reconstruction, in: IEEE GCSIP, 2013, pp. 945\u2013948.","DOI":"10.1109\/GlobalSIP.2013.6737048"},{"key":"10.1016\/j.sigpro.2023.109226_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.sigpro.2023.109100","article-title":"On exact and robust recovery for plug-and-play compressed sensing","author":"Gavaskar","year":"2023","journal-title":"Signal Process."},{"issue":"4","key":"10.1016\/j.sigpro.2023.109226_b37","doi-asserted-by":"crossref","first-page":"408","DOI":"10.1109\/TCI.2016.2599778","article-title":"Plug-and-play priors for bright field electron tomography and sparse interpolation","volume":"2","author":"Sreehari","year":"2016","journal-title":"IEEE Trans. Comput. Imag."},{"issue":"1","key":"10.1016\/j.sigpro.2023.109226_b38","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1109\/TCI.2016.2629286","article-title":"Plug-and-play ADMM for image restoration: Fixed point convergence and applications","volume":"3","author":"Chan","year":"2017","journal-title":"IEEE Trans. Comput. Imag."},{"issue":"12","key":"10.1016\/j.sigpro.2023.109226_b39","doi-asserted-by":"crossref","first-page":"1872","DOI":"10.1109\/LSP.2017.2763583","article-title":"A Plug-and-play priors approach for solving nonlinear imaging inverse problems","volume":"24","author":"Kamilov","year":"2017","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.sigpro.2023.109226_b40","doi-asserted-by":"crossref","first-page":"1280","DOI":"10.1109\/LSP.2020.3006390","article-title":"Provable convergence of plug-and-play priors with MMSE denoisers","volume":"27","author":"Xu","year":"2020","journal-title":"IEEE Signal Process. Lett."},{"issue":"3","key":"10.1016\/j.sigpro.2023.109226_b41","doi-asserted-by":"crossref","first-page":"2001","DOI":"10.1137\/17M1122451","article-title":"Plug-and-play unplugged: Optimization-free reconstruction using consensus equilibrium","volume":"11","author":"Buzzard","year":"2018","journal-title":"SIAM J. Imag. Sci."},{"key":"10.1016\/j.sigpro.2023.109226_b42","doi-asserted-by":"crossref","unstructured":"S. Gu, R. Timofte, L.V. Gool, Integrating local and non-local denoiser priors for image restoration, in: Proc. IEEE ICPR, 2018, pp. 2923\u20132928.","DOI":"10.1109\/ICPR.2018.8545043"},{"issue":"7","key":"10.1016\/j.sigpro.2023.109226_b43","doi-asserted-by":"crossref","first-page":"3535","DOI":"10.1109\/TCYB.2019.2933257","article-title":"Learning image profile enhancement and denoising statistics priors for single-image super-resolution","volume":"51","author":"Ren","year":"2019","journal-title":"IEEE Trans. Cybern."},{"key":"10.1016\/j.sigpro.2023.109226_b44","doi-asserted-by":"crossref","unstructured":"C. Wang, R. Zhang, S. Ravishankar, et al., REPNP: Plug-and-Play with deep reinforcement learning prior for robust image restoration, in: Proc. IEEE ICIP, 2022, pp. 2886\u20132890.","DOI":"10.1109\/ICIP46576.2022.9898021"},{"key":"10.1016\/j.sigpro.2023.109226_b45","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1109\/TCI.2021.3066053","article-title":"Fixed-point and objective convergence of plug-and-play algorithms","volume":"7","author":"Nair","year":"2021","journal-title":"IEEE Trans. Comput. Imag."},{"issue":"8","key":"10.1016\/j.sigpro.2023.109226_b46","doi-asserted-by":"crossref","first-page":"1108","DOI":"10.1109\/LSP.2017.2710233","article-title":"Primal\u2013dual Plug-and-play image restoration","volume":"24","author":"Ono","year":"2017","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.sigpro.2023.109226_b47","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.jvcir.2016.09.009","article-title":"Poisson inverse problems by the Plug-and-play scheme","volume":"41","author":"Rond","year":"2016","journal-title":"J. Vis. Commun. Image Represent."},{"issue":"4","key":"10.1016\/j.sigpro.2023.109226_b48","doi-asserted-by":"crossref","first-page":"1804","DOI":"10.1137\/16M1102884","article-title":"The little engine that could: Regularization by denoising (RED)","volume":"10","author":"Romano","year":"2017","journal-title":"SIAM J. Imag. Sci."},{"issue":"1","key":"10.1016\/j.sigpro.2023.109226_b49","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1109\/TIP.2018.2869727","article-title":"A convergent image fusion algorithm using sceneadapted Gaussian-mixture-based denoising","volume":"28","author":"Teodoro","year":"2019","journal-title":"IEEE Trans. Image Process."},{"issue":"3","key":"10.1016\/j.sigpro.2023.109226_b50","doi-asserted-by":"crossref","first-page":"1220","DOI":"10.1109\/TIP.2018.2875569","article-title":"Image restoration by iterative denoising and backward projections","volume":"28","author":"Tirer","year":"2019","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2023.109226_b51","doi-asserted-by":"crossref","unstructured":"T. Meinhardt, M. Moller, C. Hazirbas, et al., Learning proximal operators: Using denoising networks for regularizing inverse imaging problems, in: Proc. IEEE CVPR, 2017, pp. 1781\u20131790.","DOI":"10.1109\/ICCV.2017.198"},{"issue":"10","key":"10.1016\/j.sigpro.2023.109226_b52","doi-asserted-by":"crossref","first-page":"2305","DOI":"10.1109\/TPAMI.2018.2873610","article-title":"Denoising prior driven deep neural network for image restoration","volume":"41","author":"Dong","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.sigpro.2023.109226_b53","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1109\/TCI.2018.2880326","article-title":"Regularization by denoising: Clarifications and new interpretations","volume":"5","author":"Reehorst","year":"2018","journal-title":"IEEE Trans. Comput. Imag."},{"key":"10.1016\/j.sigpro.2023.109226_b54","unstructured":"E. Ryu, J. Liu, S. Wang, et al., Plug-and-play methods provably converge with properly trained denoisers, in: Proc. ICML, 2019, pp. 5546\u20135557."},{"key":"10.1016\/j.sigpro.2023.109226_b55","unstructured":"K. Wei, A. Aviles-Rivero, J. Liang, et al., Tuning-free Plug-and-play proximal algorithm for inverse imaging problems, in: Proc. ICML, 2020, pp. 10158\u201310169."},{"key":"10.1016\/j.sigpro.2023.109226_b56","doi-asserted-by":"crossref","unstructured":"X. Yuan, Y. Liu, J. Suo, et al., Plug-and-play algorithms for large-scale snapshot compressive imaging, in: Proc. IEEE CVPR, 2020, pp. 1447\u20131457.","DOI":"10.1109\/CVPR42600.2020.00152"},{"issue":"1","key":"10.1016\/j.sigpro.2023.109226_b57","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2010","journal-title":"Found. Trends Mach. Learn."},{"issue":"1\u20132","key":"10.1016\/j.sigpro.2023.109226_b58","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1007\/s10107-014-0826-5","article-title":"The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent","volume":"155","author":"Chen","year":"2016","journal-title":"Math. Program."},{"issue":"9","key":"10.1016\/j.sigpro.2023.109226_b59","doi-asserted-by":"crossref","first-page":"4608","DOI":"10.1109\/TIP.2018.2839891","article-title":"Ffdnet: Toward a fast and flexible solution for CNN based image denoising","volume":"27","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"8","key":"10.1016\/j.sigpro.2023.109226_b60","doi-asserted-by":"crossref","first-page":"2080","DOI":"10.1109\/TIP.2007.901238","article-title":"Image denoising by sparse 3-D transform-domain collaborative filtering","volume":"16","author":"Dabov","year":"2007","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.sigpro.2023.109226_b61","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"issue":"9","key":"10.1016\/j.sigpro.2023.109226_b62","doi-asserted-by":"crossref","first-page":"1238","DOI":"10.1007\/s10851-020-00987-0","article-title":"Non-blind and blind deconvolution under Poisson noise using fractional-order total variation","volume":"62","author":"Chowdhury","year":"2020","journal-title":"J. Math. Imaging Vis."}],"container-title":["Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168423003006?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168423003006?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,26]],"date-time":"2024-10-26T17:45:19Z","timestamp":1729964719000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0165168423003006"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":62,"alternative-id":["S0165168423003006"],"URL":"https:\/\/doi.org\/10.1016\/j.sigpro.2023.109226","relation":{},"ISSN":["0165-1684"],"issn-type":[{"type":"print","value":"0165-1684"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Denoiser-guided image deconvolution with arbitrary boundaries and incomplete observations","name":"articletitle","label":"Article Title"},{"value":"Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.sigpro.2023.109226","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109226"}}