{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:10:32Z","timestamp":1740118232139,"version":"3.37.3"},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,11,1]],"date-time":"2023-11-01T00:00:00Z","timestamp":1698796800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003392","name":"Natural Science Foundation of Fujian Province","doi-asserted-by":"publisher","award":["2021J05001"],"id":[{"id":"10.13039\/501100003392","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["20720220082"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013804","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013804","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["52105126","61971369"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Signal Processing"],"published-print":{"date-parts":[[2023,11]]},"DOI":"10.1016\/j.sigpro.2023.109181","type":"journal-article","created":{"date-parts":[[2023,7,4]],"date-time":"2023-07-04T15:35:39Z","timestamp":1688484939000},"page":"109181","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Adaptive nonlinear group delay mode estimation"],"prefix":"10.1016","volume":"212","author":[{"given":"Yijin","family":"Mao","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7190-2429","authenticated-orcid":false,"given":"Xiaotong","family":"Tu","sequence":"additional","affiliation":[]},{"given":"Saqlain","family":"Abbas","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Yue","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Xinghao","family":"Ding","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.sigpro.2023.109181_bib0001","series-title":"ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"4933","article-title":"Doa m-estimation using sparse bayesian learning","author":"Mecklenbr\u00e4uker","year":"2022"},{"key":"10.1016\/j.sigpro.2023.109181_bib0002","series-title":"ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"81","article-title":"Fast fault diagnosis method of rolling bearings in multi-sensor measurement enviroment","author":"Pan","year":"2022"},{"key":"10.1016\/j.sigpro.2023.109181_bib0003","doi-asserted-by":"crossref","first-page":"115289","DOI":"10.1016\/j.jsv.2020.115289","article-title":"Effects of high-amplitude low-frequency structural vibrations and machinery sound waves on ultrasonic guided wave propagation for health monitoring of composite aircraft primary structures","volume":"475","author":"Och\u00f4a","year":"2020","journal-title":"J. Sound Vib."},{"issue":"2","key":"10.1016\/j.sigpro.2023.109181_bib0004","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1109\/TASSP.1984.1164317","article-title":"Signal estimation from modified short-time fourier transform","volume":"32","author":"Griffin","year":"1984","journal-title":"IEEE Trans. Acoust."},{"issue":"1","key":"10.1016\/j.sigpro.2023.109181_bib0005","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/S0165-1684(99)00065-1","article-title":"Time\u2013frequency representation based on the reassigned s-method","volume":"77","author":"Djurovi\u0107","year":"1999","journal-title":"Signal Processing"},{"issue":"5","key":"10.1016\/j.sigpro.2023.109181_bib0006","doi-asserted-by":"crossref","first-page":"1335","DOI":"10.1109\/TSP.2015.2391077","article-title":"Second-order synchrosqueezing transform or invertible reassignment? towards ideal time-frequency representations","volume":"63","author":"Oberlin","year":"2015","journal-title":"IEEE Trans. Signal Process."},{"issue":"12","key":"10.1016\/j.sigpro.2023.109181_bib0007","doi-asserted-by":"crossref","first-page":"3168","DOI":"10.1109\/TSP.2017.2686355","article-title":"High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal","volume":"65","author":"Pham","year":"2017","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.sigpro.2023.109181_bib0008","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.ymssp.2018.08.004","article-title":"Time-reassigned synchrosqueezing transform: the algorithm and its applications in mechanical signal processing","volume":"117","author":"He","year":"2019","journal-title":"Mech. Syst. Signal Process"},{"issue":"1971","key":"10.1016\/j.sigpro.2023.109181_bib0009","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1098\/rspa.1998.0193","article-title":"The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis","volume":"454","author":"Huang","year":"1998","journal-title":"Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences"},{"issue":"12","key":"10.1016\/j.sigpro.2023.109181_bib0010","doi-asserted-by":"crossref","first-page":"932","DOI":"10.1109\/LSP.2007.904706","article-title":"A new formulation for empirical mode decomposition based on constrained optimization","volume":"14","author":"Meignen","year":"2007","journal-title":"IEEE Signal Process Lett."},{"issue":"1\u20132","key":"10.1016\/j.sigpro.2023.109181_bib0011","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.ymssp.2012.09.015","article-title":"A review on empirical mode decomposition in fault diagnosis of rotating machinery","volume":"35","author":"Lei","year":"2013","journal-title":"Mech. Syst. Signal Process"},{"issue":"5","key":"10.1016\/j.sigpro.2023.109181_bib0012","doi-asserted-by":"crossref","first-page":"3550","DOI":"10.1109\/TIE.2018.2851968","article-title":"Real-time implementation of signal processing techniques for disturbances detection","volume":"66","author":"Singh","year":"2018","journal-title":"IEEE Trans. Ind. Electron."},{"issue":"16","key":"10.1016\/j.sigpro.2023.109181_bib0013","doi-asserted-by":"crossref","first-page":"3999","DOI":"10.1109\/TSP.2013.2265222","article-title":"Empirical wavelet transform","volume":"61","author":"Gilles","year":"2013","journal-title":"IEEE Trans. Signal Process."},{"issue":"3","key":"10.1016\/j.sigpro.2023.109181_bib0014","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1109\/TSP.2013.2288675","article-title":"Variational mode decomposition","volume":"62","author":"Dragomiretskiy","year":"2013","journal-title":"IEEE Trans. Signal Process."},{"issue":"22","key":"10.1016\/j.sigpro.2023.109181_bib0015","doi-asserted-by":"crossref","first-page":"6024","DOI":"10.1109\/TSP.2017.2731300","article-title":"Nonlinear chirp mode decomposition: a variational method","volume":"65","author":"Chen","year":"2017","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.sigpro.2023.109181_bib0016","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.jsv.2018.10.010","article-title":"Detection of rub-impact fault for rotor-stator systems: a novel method based on adaptive chirp mode decomposition","volume":"440","author":"Chen","year":"2019","journal-title":"J. Sound Vib."},{"key":"10.1016\/j.sigpro.2023.109181_bib0017","series-title":"ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","first-page":"5632","article-title":"Adaptive variational nonlinear chirp mode decomposition","author":"Liang","year":"2022"},{"key":"10.1016\/j.sigpro.2023.109181_bib0018","doi-asserted-by":"crossref","first-page":"115800","DOI":"10.1016\/j.jsv.2020.115800","article-title":"Generalized dispersive mode decomposition: algorithm and applications","volume":"492","author":"Chen","year":"2021","journal-title":"J. Sound Vib."},{"key":"10.1016\/j.sigpro.2023.109181_bib0019","doi-asserted-by":"crossref","first-page":"107952","DOI":"10.1016\/j.sigpro.2020.107952","article-title":"Estimating nonlinear chirp modes exploiting sparsity","volume":"183","author":"Tu","year":"2021","journal-title":"Signal Processing"},{"issue":"4","key":"10.1016\/j.sigpro.2023.109181_bib0020","doi-asserted-by":"crossref","first-page":"2187","DOI":"10.1121\/10.0014696","article-title":"Sparse optimization for nonlinear group delay mode estimation","volume":"152","author":"Liang","year":"2022","journal-title":"J. Acoust. Soc. Am."},{"key":"10.1016\/j.sigpro.2023.109181_bib0021","series-title":"11th IMA International Conference on Mathematics in Signal Processing","first-page":"1","article-title":"Enhancing smoothness in amplitude modulated sparse signals","author":"Adalbj\u00f6rnsson","year":"2016"},{"key":"10.1016\/j.sigpro.2023.109181_bib0022","doi-asserted-by":"crossref","first-page":"1300","DOI":"10.1109\/ACCESS.2018.2886471","article-title":"A review of sparse recovery algorithms","volume":"7","author":"Marques","year":"2018","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.sigpro.2023.109181_bib0023","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2011","journal-title":"Foundations and Trends\u00ae in Machine learning"},{"issue":"1","key":"10.1016\/j.sigpro.2023.109181_bib0024","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1080\/10618600.2015.1114491","article-title":"An augmented ADMM algorithm with application to the generalized lasso problem","volume":"26","author":"Zhu","year":"2017","journal-title":"Journal of Computational and Graphical Statistics"},{"issue":"12","key":"10.1016\/j.sigpro.2023.109181_bib0025","doi-asserted-by":"crossref","first-page":"3397","DOI":"10.1109\/78.258082","article-title":"Matching pursuits with time-frequency dictionaries","volume":"41","author":"Mallat","year":"1993","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.sigpro.2023.109181_bib0026","first-page":"211","article-title":"Sparse Bayesian learning and the relevance vector machine","volume":"1","author":"Tipping","year":"2001","journal-title":"Journal of machine learning research"},{"issue":"6","key":"10.1016\/j.sigpro.2023.109181_bib0027","doi-asserted-by":"crossref","first-page":"2346","DOI":"10.1109\/TSP.2007.914345","article-title":"Bayesian compressive sensing","volume":"56","author":"Ji","year":"2008","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.sigpro.2023.109181_bib0028","series-title":"International Workshop on Artificial Intelligence and Statistics","first-page":"276","article-title":"Fast marginal likelihood maximisation for sparse Bayesian models","author":"Tipping","year":"2003"},{"key":"10.1016\/j.sigpro.2023.109181_bib0029","doi-asserted-by":"crossref","first-page":"872","DOI":"10.1109\/TSP.2020.2967665","article-title":"Sparse bayesian DOA estimation using hierarchical synthesis lasso priors for off-grid signals","volume":"68","author":"Yang","year":"2020","journal-title":"IEEE Trans. Signal Process."},{"issue":"25","key":"10.1016\/j.sigpro.2023.109181_bib0030","doi-asserted-by":"crossref","first-page":"998","DOI":"10.1049\/ell2.12331","article-title":"Complex multitask compressive sensing using laplace priors","volume":"57","author":"Zhang","year":"2021","journal-title":"Electron Lett."},{"key":"10.1016\/j.sigpro.2023.109181_bib0031","doi-asserted-by":"crossref","unstructured":"R.J. Tibshirani, J. Taylor, The solution path of the generalized lasso (2011a).","DOI":"10.1214\/11-AOS878"},{"issue":"3","key":"10.1016\/j.sigpro.2023.109181_bib0032","doi-asserted-by":"crossref","first-page":"1335","DOI":"10.1214\/11-AOS878","article-title":"The solution path of the generalized lasso","volume":"39","author":"Tibshirani","year":"2011","journal-title":"Ann. Stat."},{"key":"10.1016\/j.sigpro.2023.109181_bib0033","article-title":"Penalized and constrained regression","author":"James","year":"2013","journal-title":"Unpublished manuscript, http:\/\/www-bcf. usc. edu\/gareth\/research\/Research. html"},{"issue":"4","key":"10.1016\/j.sigpro.2023.109181_bib0034","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1080\/10618600.2018.1473777","article-title":"Algorithms for fitting the constrained lasso","volume":"27","author":"Gaines","year":"2018","journal-title":"Journal of Computational and Graphical Statistics"},{"key":"10.1016\/j.sigpro.2023.109181_bib0035","series-title":"Technical Report","article-title":"Self-adaptive Lasso and its Bayesian estimation","author":"Kang","year":"2009"},{"key":"10.1016\/j.sigpro.2023.109181_bib0036","doi-asserted-by":"crossref","unstructured":"G. Casella, M. Ghosh, J. Gill, M. Kyung, Penalized regression, standard errors, and bayesian lassos (2010).","DOI":"10.1214\/10-BA607"},{"key":"10.1016\/j.sigpro.2023.109181_bib0037","article-title":"Group sparse coding with a laplacian scale mixture prior","volume":"23","author":"Garrigues","year":"2010","journal-title":"Adv. Neural. Inf. Process Syst."},{"issue":"5","key":"10.1016\/j.sigpro.2023.109181_bib0038","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1049\/sil2.12134","article-title":"Modified complex multitask Bayesian compressive sensing using Laplacian scale mixture prior","volume":"16","author":"Zhang","year":"2022","journal-title":"IET Signal Proc."},{"key":"10.1016\/j.sigpro.2023.109181_bib0039","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.dsp.2016.09.008","article-title":"Generalized beta Bayesian compressive sensing model for signal reconstruction","volume":"60","author":"Sadeghigol","year":"2017","journal-title":"Digit. Signal Process"},{"issue":"18","key":"10.1016\/j.sigpro.2023.109181_bib0040","doi-asserted-by":"crossref","first-page":"5994","DOI":"10.1109\/JSEN.2017.2737467","article-title":"Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition","volume":"17","author":"Chen","year":"2017","journal-title":"IEEE Sens. J."},{"issue":"8","key":"10.1016\/j.sigpro.2023.109181_bib0041","doi-asserted-by":"crossref","first-page":"4353","DOI":"10.1109\/JSEN.2020.2964109","article-title":"Horizontal synchrosqueezing transform: algorithm and applications","volume":"20","author":"Tu","year":"2020","journal-title":"IEEE Sens. J."}],"container-title":["Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168423002554?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168423002554?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,28]],"date-time":"2024-03-28T01:03:01Z","timestamp":1711587781000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0165168423002554"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,11]]},"references-count":41,"alternative-id":["S0165168423002554"],"URL":"https:\/\/doi.org\/10.1016\/j.sigpro.2023.109181","relation":{},"ISSN":["0165-1684"],"issn-type":[{"type":"print","value":"0165-1684"}],"subject":[],"published":{"date-parts":[[2023,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Adaptive nonlinear group delay mode estimation","name":"articletitle","label":"Article Title"},{"value":"Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.sigpro.2023.109181","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"109181"}}