{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T11:32:48Z","timestamp":1742643168679,"version":"3.37.3"},"reference-count":57,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,10,1]],"date-time":"2021-10-01T00:00:00Z","timestamp":1633046400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["42074034","61701055"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007928","name":"Ningbo Municipal Bureau of Science and Technology","doi-asserted-by":"publisher","award":["cstc2019jxj100007"],"id":[{"id":"10.13039\/501100007928","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["2019CDQYTX019"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012457","name":"Chongqing Basic and Frontier Research Project","doi-asserted-by":"publisher","award":["cstc2018jcyj AX0161"],"id":[{"id":"10.13039\/501100012457","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Signal Processing"],"published-print":{"date-parts":[[2021,10]]},"DOI":"10.1016\/j.sigpro.2021.108151","type":"journal-article","created":{"date-parts":[[2021,5,13]],"date-time":"2021-05-13T15:40:27Z","timestamp":1620920427000},"page":"108151","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["MRI reconstruction based on Bayesian group sparse representation"],"prefix":"10.1016","volume":"187","author":[{"given":"Jianxin","family":"Cao","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6608-2286","authenticated-orcid":false,"given":"Shujun","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Hongqing","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Kui","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"11","key":"10.1016\/j.sigpro.2021.108151_bib0001","doi-asserted-by":"crossref","first-page":"4311","DOI":"10.1109\/TSP.2006.881199","article-title":"K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation","volume":"54","author":"Aharon","year":"2006","journal-title":"IEEE Trans. Sign. Process."},{"issue":"4","key":"10.1016\/j.sigpro.2021.108151_bib0002","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1109\/TCI.2015.2485078","article-title":"Iteratively reweighted l1 approaches to sparse composite regularization","volume":"1","author":"Ahmad","year":"2015","journal-title":"IEEE Trans. Comput. Imag."},{"issue":"11","key":"10.1016\/j.sigpro.2021.108151_bib0003","doi-asserted-by":"crossref","first-page":"2906","DOI":"10.1109\/TSP.2014.2319775","article-title":"Bayesian group-sparse modeling and variational inference","volume":"62","author":"Babacan","year":"2014","journal-title":"IEEE Trans. Sign. Process."},{"key":"10.1016\/j.sigpro.2021.108151_bib0004","series-title":"IEEE International Conference on Computer Vision","first-page":"3384","article-title":"Fast sparsity-based orthogonal dictionary learning for image restoration","author":"Bao","year":"2013"},{"issue":"3","key":"10.1016\/j.sigpro.2021.108151_bib0005","doi-asserted-by":"crossref","first-page":"510","DOI":"10.1016\/j.acha.2014.06.007","article-title":"Convergence analysis for iterative data-driven tight frame construction scheme","volume":"38","author":"Bao","year":"2015","journal-title":"Appl. Comput. Harm. Anal."},{"year":"1992","author":"Box","series-title":"Bayesian inference in statistical analysis","key":"10.1016\/j.sigpro.2021.108151_bib0006"},{"issue":"1","key":"10.1016\/j.sigpro.2021.108151_bib0007","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2010","journal-title":"Foundations & Trends in Machine Learning"},{"issue":"2","key":"10.1016\/j.sigpro.2021.108151_bib0008","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1109\/TIT.2005.862083","article-title":"Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information","volume":"52","author":"Cand\u00e8s","year":"2006","journal-title":"IEEE Trans. Inform. Theo."},{"issue":"5","key":"10.1016\/j.sigpro.2021.108151_bib0009","doi-asserted-by":"crossref","first-page":"877","DOI":"10.1007\/s00041-008-9045-x","article-title":"Enhancing sparsity by reweighted l1 minimization","volume":"14","author":"Cand\u00e8s","year":"2008","journal-title":"J. Fourier Anal. Appl."},{"key":"10.1016\/j.sigpro.2021.108151_bib0010","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/j.neunet.2019.12.010","article-title":"CS-MRI reconstruction based on analysis dictionary learning and manifold structure regularization","volume":"123","author":"Cao","year":"2020","journal-title":"Neural Networks"},{"key":"10.1016\/j.sigpro.2021.108151_bib0011","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.neucom.2019.01.107","article-title":"Sparse representation of classified patches for CS-MRI reconstruction","volume":"339","author":"Cao","year":"2019","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.sigpro.2021.108151_bib0012","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1016\/j.media.2013.12.004","article-title":"The benefit of tree sparsity in accelerated MRI","volume":"18","author":"Chen","year":"2014","journal-title":"Medical Image Analysis"},{"key":"10.1016\/j.sigpro.2021.108151_bib0013","first-page":"561","article-title":"Learning feature representations with K-means","author":"Coates","year":"2012","journal-title":"Neural Networks: Tricks of the Trade"},{"issue":"7","key":"10.1016\/j.sigpro.2021.108151_bib0014","doi-asserted-by":"crossref","first-page":"2477","DOI":"10.1109\/TSP.2005.849172","article-title":"Sparse solutions to linear inverse problems with multiple measurement vectors","volume":"53","author":"Cotter","year":"2005","journal-title":"IEEE Trans. Sign. Process."},{"issue":"8","key":"10.1016\/j.sigpro.2021.108151_bib0015","doi-asserted-by":"crossref","first-page":"3618","DOI":"10.1109\/TIP.2014.2329449","article-title":"Compressive sensing via nonlocal low-rank regularization","volume":"23","author":"Dong","year":"2014","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.sigpro.2021.108151_bib0016","doi-asserted-by":"crossref","first-page":"1618","DOI":"10.1109\/TIP.2012.2235847","article-title":"Nonlocally centralized sparse representation for image restoration","volume":"22","author":"Dong","year":"2013","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.sigpro.2021.108151_bib0017","first-page":"619","article-title":"Understanding the convergence of the alternating direction method of multipliers: theoretical and computational perspectives","volume":"11","author":"Eckstein","year":"2015","journal-title":"Pacific J. Optim."},{"key":"10.1016\/j.sigpro.2021.108151_bib0018","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.ins.2018.10.050","article-title":"Robust image compressive sensing based on half-quadratic function and weighted schatten-p norm","volume":"477","author":"Feng","year":"2019","journal-title":"Inform. Sci."},{"key":"10.1016\/j.sigpro.2021.108151_bib0019","first-page":"676","article-title":"Group sparse coding with a Laplacian scale mixture prior","author":"Garrigues","year":"2010","journal-title":"Int. Conf. Neural Inform. Process. Syst."},{"issue":"12","key":"10.1016\/j.sigpro.2021.108151_bib0020","doi-asserted-by":"crossref","first-page":"4686","DOI":"10.1109\/TSP.2009.2026004","article-title":"Recovering sparse signals with a certain family of nonconvex penalties and DC programming","volume":"57","author":"Gasso","year":"2009","journal-title":"IEEE Trans. Sign. Process."},{"issue":"6","key":"10.1016\/j.sigpro.2021.108151_bib0021","doi-asserted-by":"crossref","first-page":"3472","DOI":"10.1109\/TGRS.2018.2885089","article-title":"SAR image despeckling based on nonlocal low-rank regularization","volume":"57","author":"Guan","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"issue":"9","key":"10.1016\/j.sigpro.2021.108151_bib0022","doi-asserted-by":"crossref","first-page":"1649","DOI":"10.1109\/TMI.2011.2140121","article-title":"A fast wavelet-based reconstruction method for magnetic resonance imaging","volume":"30","author":"Guerquin-Kern","year":"2011","journal-title":"IEEE Trans. Med. Imag."},{"issue":"5","key":"10.1016\/j.sigpro.2021.108151_bib0023","doi-asserted-by":"crossref","first-page":"670","DOI":"10.1016\/j.media.2011.06.001","article-title":"Efficient MR image reconstruction for compressed MR imaging","volume":"15","author":"Huang","year":"2011","journal-title":"Med. Image Anal."},{"issue":"7","key":"10.1016\/j.sigpro.2021.108151_bib0024","doi-asserted-by":"crossref","first-page":"3171","DOI":"10.1109\/TIP.2017.2676466","article-title":"Mixed noise removal via Laplacian scale mixture modeling and nonlocal low-rank approximation","volume":"26","author":"Huang","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"12","key":"10.1016\/j.sigpro.2021.108151_bib0025","doi-asserted-by":"crossref","first-page":"5007","DOI":"10.1109\/TIP.2014.2360122","article-title":"Bayesian nonparametric dictionary learning for compressed sensing MRI","volume":"23","author":"Huang","year":"2014","journal-title":"IEEE Trans. Image Process."},{"issue":"11","key":"10.1016\/j.sigpro.2021.108151_bib0026","doi-asserted-by":"crossref","first-page":"4484","DOI":"10.1109\/TGRS.2012.2191590","article-title":"Total variation spatial regularization for sparse hyperspectral unmixing","volume":"50","author":"Iordache","year":"2012","journal-title":"IEEE Trans. Geo. Remote Sens."},{"issue":"6","key":"10.1016\/j.sigpro.2021.108151_bib0027","doi-asserted-by":"crossref","first-page":"2346","DOI":"10.1109\/TSP.2007.914345","article-title":"Bayesian compressive sensing","volume":"56","author":"Ji","year":"2008","journal-title":"IEEE Trans. Sign. Process."},{"issue":"4","key":"10.1016\/j.sigpro.2021.108151_bib0028","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1109\/TCI.2016.2601296","article-title":"A general framework for compressed sensing and parallel MRI using annihilating filter based low-rank Hankel matrix","volume":"2","author":"Jin","year":"2016","journal-title":"IEEE Trans. Comput. Imag."},{"key":"10.1016\/j.sigpro.2021.108151_bib0029","doi-asserted-by":"crossref","first-page":"6601","DOI":"10.1007\/s00521-018-3735-3","article-title":"EEG classification using sparse Bayesian extreme learning machine for brain-computer interface","volume":"32","author":"Jin","year":"2020","journal-title":"Neur. Comput. Appl."},{"issue":"1","key":"10.1016\/j.sigpro.2021.108151_bib0030","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.media.2015.05.012","article-title":"Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform","volume":"27","author":"Lai","year":"2016","journal-title":"Med. Image Anal."},{"issue":"9","key":"10.1016\/j.sigpro.2021.108151_bib0031","doi-asserted-by":"crossref","first-page":"4638","DOI":"10.1109\/TIP.2018.2837865","article-title":"Image super-resolution with parametric sparse model learning","volume":"27","author":"Li","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.sigpro.2021.108151_bib0032","doi-asserted-by":"crossref","first-page":"1132","DOI":"10.1109\/TMI.2013.2255133","article-title":"Blind compressive sensing dynamic MRI","volume":"32","author":"Lingala","year":"2013","journal-title":"IEEE Trans. Med. Imag."},{"issue":"3","key":"10.1016\/j.sigpro.2021.108151_bib0033","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TCYB.2016.2521428","article-title":"Weighted joint sparse representation for removing mixed noise in image","volume":"47","author":"Liu","year":"2017","journal-title":"IEEE Trans. Cybernet."},{"issue":"7","key":"10.1016\/j.sigpro.2021.108151_bib0034","doi-asserted-by":"crossref","first-page":"1290","DOI":"10.1109\/TMI.2013.2256464","article-title":"Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating","volume":"32","author":"Liu","year":"2013","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.sigpro.2021.108151_bib0035","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.ins.2018.03.064","article-title":"Group sparsity with orthogonal dictionary and nonconvex regularization for exact MRI reconstruction","volume":"451-452","author":"Liu","year":"2018","journal-title":"Inform. Sci."},{"key":"10.1016\/j.sigpro.2021.108151_bib0036","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2020.107252","article-title":"Smooth robust tensor principal component analysis for compressed sensing of dynamic MRI","volume":"102","author":"Liu","year":"2020","journal-title":"Pattern Recognition"},{"issue":"6","key":"10.1016\/j.sigpro.2021.108151_bib0037","doi-asserted-by":"crossref","first-page":"1182","DOI":"10.1002\/mrm.21391","article-title":"Sparse MRI: The application of compressed sensing for rapid MR imaging","volume":"58","author":"Lustig","year":"2007","journal-title":"Magnet. Reson. Med."},{"key":"10.1016\/j.sigpro.2021.108151_bib0038","series-title":"IEEE International Conference on Computer Vision","first-page":"2272","article-title":"Non-local sparse models for image restoration","author":"Mairal","year":"2009"},{"issue":"11","key":"10.1016\/j.sigpro.2021.108151_bib0039","doi-asserted-by":"crossref","first-page":"1338","DOI":"10.1109\/TIP.2003.818640","article-title":"Image denoising using scale mixtures of Gaussians in the wavelet domain","volume":"12","author":"Portilla","year":"2003","journal-title":"IEEE Trans. Image Process."},{"issue":"6","key":"10.1016\/j.sigpro.2021.108151_bib0040","doi-asserted-by":"crossref","first-page":"843","DOI":"10.1016\/j.media.2013.09.007","article-title":"Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator","volume":"18","author":"Qu","year":"2014","journal-title":"Med. Image Anal."},{"issue":"5","key":"10.1016\/j.sigpro.2021.108151_bib0041","doi-asserted-by":"crossref","first-page":"1028","DOI":"10.1109\/TMI.2010.2090538","article-title":"MR image reconstruction from highly undersampled k-space data by dictionary learning","volume":"30","author":"Ravishankar","year":"2011","journal-title":"IEEE Trans. Med. Imag."},{"issue":"9","key":"10.1016\/j.sigpro.2021.108151_bib0042","doi-asserted-by":"crossref","first-page":"2389","DOI":"10.1109\/TSP.2015.2405503","article-title":"Sparsifying transform learning with efficient optimal updates and convergence guarantees","volume":"63","author":"Ravishankar","year":"2015","journal-title":"IEEE Trans. Sign. Process."},{"issue":"5","key":"10.1016\/j.sigpro.2021.108151_bib0043","doi-asserted-by":"crossref","first-page":"2168","DOI":"10.1109\/TIP.2016.2542442","article-title":"Single image super-resolution using local geometric duality and non-local similarity","volume":"25","author":"Ren","year":"2016","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2021.108151_bib0044","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1016\/j.patcog.2016.09.040","article-title":"Multi-dimensional low rank plus sparse decomposition for reconstruction of under-sampled dynamic MRI","volume":"63","author":"Roohi","year":"2017","journal-title":"Pattern Recognition"},{"issue":"10","key":"10.1016\/j.sigpro.2021.108151_bib0045","doi-asserted-by":"crossref","first-page":"4810","DOI":"10.1109\/TIP.2018.2845123","article-title":"Robust foreground estimation via structured Gaussian scale mixture modeling","volume":"27","author":"Shi","year":"2018","journal-title":"IEEE Trans. Image Process."},{"issue":"4","key":"10.1016\/j.sigpro.2021.108151_bib0046","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1109\/TCI.2019.2914773","article-title":"Image restoration and reconstruction using targeted plug-and-play priors","volume":"5","author":"Teodoro","year":"2019","journal-title":"IEEE Trans. Comput. Imag."},{"issue":"1","key":"10.1016\/j.sigpro.2021.108151_bib0047","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1109\/TMI.2008.927346","article-title":"Highly undersampled magnetic resonance image reconstruction via homotopic l0-minimization","volume":"28","author":"Trzasko","year":"2009","journal-title":"IEEE Trans. Med. Imag."},{"issue":"10","key":"10.1016\/j.sigpro.2021.108151_bib0048","doi-asserted-by":"crossref","first-page":"2759","DOI":"10.1109\/TSP.2018.2816574","article-title":"Alternative to extended block sparse Bayesian learning and its relation to pattern-coupled sparse Bayesian learning","volume":"66","author":"Wang","year":"2018","journal-title":"IEEE Trans. Sign. Process."},{"issue":"1","key":"10.1016\/j.sigpro.2021.108151_bib0049","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1007\/s10915-018-0757-z","article-title":"Global convergence of ADMM in nonconvex nonsmooth optimization","volume":"78","author":"Wang","year":"2019","journal-title":"J. Sci. Comput."},{"issue":"7","key":"10.1016\/j.sigpro.2021.108151_bib0050","doi-asserted-by":"crossref","first-page":"3704","DOI":"10.1109\/TSP.2007.894265","article-title":"An empirical Bayesian strategy for solving the simultaneous sparse approximation problem","volume":"55","author":"Wipf","year":"2007","journal-title":"IEEE Trans. Sign. Process."},{"issue":"8","key":"10.1016\/j.sigpro.2021.108151_bib0051","doi-asserted-by":"crossref","first-page":"2153","DOI":"10.1109\/TSP.2004.831016","article-title":"Sparse Bayesian learning for basis selection","volume":"52","author":"Wipf","year":"2004","journal-title":"IEEE Trans. Sign. Process."},{"issue":"2","key":"10.1016\/j.sigpro.2021.108151_bib0052","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1109\/JSTSP.2010.2042333","article-title":"A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data","volume":"4","author":"Yang","year":"2010","journal-title":"IEEE J. Select. Topic. Sign. Process."},{"key":"10.1016\/j.sigpro.2021.108151_bib0053","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.media.2017.11.003","article-title":"An efficient algorithm for dynamic MRI using low-rank and total variation regularizations","volume":"44","author":"Yao","year":"2018","journal-title":"Med. Image Anal."},{"issue":"9","key":"10.1016\/j.sigpro.2021.108151_bib0054","doi-asserted-by":"crossref","first-page":"1850","DOI":"10.1109\/TBME.2015.2503756","article-title":"Fast multi-class dictionaries learning with geometrical directions in MRI reconstruction","volume":"63","author":"Zhan","year":"2016","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"8","key":"10.1016\/j.sigpro.2021.108151_bib0055","doi-asserted-by":"crossref","first-page":"3336","DOI":"10.1109\/TIP.2014.2323127","article-title":"Group-based sparse representation for image restoration","volume":"23","author":"Zhang","year":"2014","journal-title":"IEEE Trans. Image Process."},{"issue":"02","key":"10.1016\/j.sigpro.2021.108151_bib0056","doi-asserted-by":"crossref","DOI":"10.1142\/S0129065716500325","article-title":"Sparse Bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification","volume":"27","author":"Zhang","year":"2017","journal-title":"Int. J. Neur. Syst."},{"issue":"11","key":"10.1016\/j.sigpro.2021.108151_bib0057","doi-asserted-by":"crossref","first-page":"2256","DOI":"10.1109\/TNNLS.2015.2476656","article-title":"Sparse Bayesian classification of EEG for brain-computer interface","volume":"27","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Neur. Netw. Learn. Syst."}],"container-title":["Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168421001894?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168421001894?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,7]],"date-time":"2023-01-07T20:18:25Z","timestamp":1673122705000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0165168421001894"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,10]]},"references-count":57,"alternative-id":["S0165168421001894"],"URL":"https:\/\/doi.org\/10.1016\/j.sigpro.2021.108151","relation":{},"ISSN":["0165-1684"],"issn-type":[{"type":"print","value":"0165-1684"}],"subject":[],"published":{"date-parts":[[2021,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"MRI reconstruction based on Bayesian group sparse representation","name":"articletitle","label":"Article Title"},{"value":"Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.sigpro.2021.108151","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108151"}}