{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:09:46Z","timestamp":1740118186901,"version":"3.37.3"},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11471010"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Signal Processing"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.sigpro.2020.107861","type":"journal-article","created":{"date-parts":[[2020,10,28]],"date-time":"2020-10-28T07:36:09Z","timestamp":1603870569000},"page":"107861","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Robust supervised and semi-supervised twin extreme learning machines for pattern classification"],"prefix":"10.1016","volume":"180","author":[{"given":"Jun","family":"Ma","sequence":"first","affiliation":[]},{"given":"Liming","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.sigpro.2020.107861_bib0001","series-title":"IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541)","article-title":"Extreme learning machine: a new learning scheme of feedfor- ward neural networks","author":"Huang","year":"2004"},{"issue":"1\u20133","key":"10.1016\/j.sigpro.2020.107861_bib0002","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Extreme learning machine: theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.sigpro.2020.107861_bib0003","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.sigpro.2016.03.016","article-title":"Efficient modeling of fiber optic gyroscope drift using improved EEMD and extreme learning machine","volume":"128","author":"Chen","year":"2016","journal-title":"Signal Processing"},{"issue":"10\u201311","key":"10.1016\/j.sigpro.2020.107861_bib0004","doi-asserted-by":"crossref","first-page":"2588","DOI":"10.1016\/j.patcog.2011.03.013","article-title":"Human face recognition based on multidimensional PCA and extreme learning machine","volume":"44","author":"Mohammed","year":"2011","journal-title":"Pattern Recognit"},{"issue":"10","key":"10.1016\/j.sigpro.2020.107861_bib0005","doi-asserted-by":"crossref","first-page":"1858","DOI":"10.1109\/TCYB.2014.2298235","article-title":"Sparse extreme learning machine for classification","volume":"44","author":"Bai","year":"2014","journal-title":"IEEE Trans Cybern"},{"issue":"2","key":"10.1016\/j.sigpro.2020.107861_bib0006","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1109\/TSMCB.2011.2168604","article-title":"Extreme learning machine for regression and multiclass classification, IEEE transactions on systems","volume":"42","author":"Huang","year":"2012","journal-title":"Man, and Cybernetics, Part B (Cybernetics)"},{"issue":"12","key":"10.1016\/j.sigpro.2020.107861_bib0007","doi-asserted-by":"crossref","first-page":"2405","DOI":"10.1109\/TCYB.2014.2307349","article-title":"Semi-supervised and unsupervised extreme learning machines","volume":"44","author":"Huang","year":"2014","journal-title":"IEEE Trans Cybern"},{"key":"10.1016\/j.sigpro.2020.107861_bib0008","doi-asserted-by":"crossref","first-page":"2864","DOI":"10.1016\/j.neucom.2017.11.030","article-title":"The memory degradation based online sequential extreme learning machine","volume":"275","author":"Zou","year":"2018","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.sigpro.2020.107861_bib0009","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1109\/TPAMI.2007.1068","article-title":"Twin support vector machines for pattern classification","volume":"29","author":"Jayadeva","year":"2007","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.sigpro.2020.107861_bib0010","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.sigpro.2019.03.026","article-title":"Discriminative information-based nonparallel support vector machine","volume":"162","author":"Hou","year":"2019","journal-title":"Signal Processing"},{"key":"10.1016\/j.sigpro.2020.107861_bib0011","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1016\/j.sigpro.2014.04.010","article-title":"Energy-based model of least squares twin support vector machines for human action recognition","volume":"104","author":"Nasiri","year":"2014","journal-title":"Signal Processing"},{"issue":"4","key":"10.1016\/j.sigpro.2020.107861_bib0012","doi-asserted-by":"crossref","first-page":"510","DOI":"10.1016\/j.sigpro.2008.10.002","article-title":"Nonparallel plane proximal classifier","volume":"89","author":"Ghorai","year":"2009","journal-title":"Signal Processing"},{"key":"10.1016\/j.sigpro.2020.107861_bib0013","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.neucom.2017.04.036","article-title":"Twin extreme learning machines for pattern classification","volume":"260","author":"Wan","year":"2017","journal-title":"Neurocomputing"},{"key":"10.1016\/j.sigpro.2020.107861_bib0014","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.neucom.2018.08.028","article-title":"Laplacian twin extreme learning machine for semi-supervised classification","volume":"321","author":"Li","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.sigpro.2020.107861_bib0015","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.neucom.2018.05.100","article-title":"Correntropy-based robust extreme learning machine for classification","volume":"313","author":"Ren","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.sigpro.2020.107861_bib0016","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.knosys.2018.06.029","article-title":"Robust semi-supervised extreme learning machine","volume":"159","author":"Pei","year":"2018","journal-title":"Knowl Based Syst"},{"key":"10.1016\/j.sigpro.2020.107861_bib0017","doi-asserted-by":"crossref","first-page":"76176","DOI":"10.1109\/ACCESS.2019.2922385","article-title":"Adaptive safe semi-supervised extreme machine learning","volume":"7","author":"Ma","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.sigpro.2020.107861_bib0018","doi-asserted-by":"crossref","first-page":"112067","DOI":"10.1109\/ACCESS.2019.2935008","article-title":"Sparse twin extreme learning machine with varepsilon-insensitive zone pinball loss","volume":"7","author":"Shen","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.sigpro.2020.107861_bib0019","doi-asserted-by":"crossref","first-page":"1519","DOI":"10.1016\/j.neucom.2014.09.022","article-title":"Outlier-robust extreme learning machine for regression problems","volume":"151","author":"Zhang","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.sigpro.2020.107861_bib0020","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.sigpro.2015.12.008","article-title":"Lk-SVD: a robust dictionary learning algorithm with simultaneous update","volume":"123","author":"Mukherjee","year":"2016","journal-title":"Signal Processing"},{"key":"10.1016\/j.sigpro.2020.107861_bib0021","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.sigpro.2017.04.015","article-title":"Robust coupled dictionary learning with l1-norm coefficients transition constraint for noisy image super-resolution","volume":"140","author":"Yue","year":"2017","journal-title":"Signal Processing"},{"issue":"9","key":"10.1016\/j.sigpro.2020.107861_bib0022","doi-asserted-by":"crossref","first-page":"4494","DOI":"10.1109\/TNNLS.2017.2749428","article-title":"L1-norm distance minimization-based fast robust twin support vector k-plane clustering","volume":"29","author":"Ye","year":"2018","journal-title":"IEEE Transactions on Neural Networks and Systems"},{"issue":"1","key":"10.1016\/j.sigpro.2020.107861_bib0023","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1016\/j.patcog.2011.07.009","article-title":"Improve robustness of sparse pca by l1-norm maximization","volume":"45","author":"Meng","year":"2012","journal-title":"Pattern Recognit"},{"issue":"6","key":"10.1016\/j.sigpro.2020.107861_bib0024","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1109\/TCYB.2013.2273355","article-title":"Fisher discriminant analysis with l1-norm","volume":"44","author":"Wang","year":"2014","journal-title":"IEEE Trans Cybern"},{"key":"10.1016\/j.sigpro.2020.107861_bib0025","unstructured":"W. Jiang, F. Nie, H. Huang, Robust dictionary learning with capped l1-norm, 2015, URL https:\/\/aaai.org\/ocs\/index.php\/IJCAI\/IJCAI15\/paper\/view\/11349."},{"key":"10.1016\/j.sigpro.2020.107861_bib0026","series-title":"Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, International Joint Conferences on Artificial Intelligence Organization","article-title":"Joint capped norms minimization for robust matrix recovery","author":"Nie","year":"2017"},{"key":"10.1016\/j.sigpro.2020.107861_bib0027","series-title":"2017\u00a0IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","article-title":"Feature selection and clustering via robust graph-Laplacian PCA based on capped L1-norm","author":"Wu","year":"2017"},{"key":"10.1016\/j.sigpro.2020.107861_bib0028","series-title":"2017\u00a0IEEE International Conference on Industrial Technology (ICIT)","article-title":"Rolling fault diagnosis via robust semi-supervised model with capped L2,1-norm regularization","author":"Zhao","year":"2017"},{"key":"10.1016\/j.sigpro.2020.107861_bib0029","series-title":"Advances in Neural Information Processing Systems 23: Conference on Neural Information Processing Systems A Meeting Held December,","article-title":"Efficient and robust feature selection via joint l2,1-norms minimization","author":"Nie","year":"2010"},{"issue":"11","key":"10.1016\/j.sigpro.2020.107861_bib0030","doi-asserted-by":"crossref","first-page":"1738","DOI":"10.1109\/TNNLS.2012.2212721","article-title":"Discriminative least squares regression for multiclass classification and feature selection","volume":"23","author":"Xiang","year":"2012","journal-title":"IEEE Trans Neural Netw Learn Syst"},{"key":"10.1016\/j.sigpro.2020.107861_bib0031","doi-asserted-by":"crossref","unstructured":"F. Nie, X. Wang, H. Huang, Multiclass capped lp-norm svm for robust classifications, 2017. URL https:\/\/aaai.org\/ocs\/index.php\/AAAI\/AAAI17\/paper\/view\/15039.","DOI":"10.1609\/aaai.v31i1.10948"},{"key":"10.1016\/j.sigpro.2020.107861_bib0032","series-title":"31st International Conference on Machine Learning, ICML 2014","first-page":"1883","article-title":"New primal SVM solver with linear computational cost for big data classifications","volume":"volume\u00a03","author":"Nie","year":"2014"},{"key":"10.1016\/j.sigpro.2020.107861_bib0033","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.neunet.2019.01.016","article-title":"Robust capped l1-norm twin support vector machine","volume":"114","author":"Wang","year":"2019","journal-title":"Neural Networks"},{"key":"10.1016\/j.sigpro.2020.107861_bib0034","series-title":"Proceedings of the Twenty-Third international joint conference on Artificial Intelligence","article-title":"Adaptive loss minimization for semi-supervised elastic embedding","author":"Nie","year":"2013"},{"key":"10.1016\/j.sigpro.2020.107861_bib0035","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.neunet.2012.07.011","article-title":"Laplacian twin support vector machine for semi-supervised classification","volume":"35","author":"Qi","year":"2012","journal-title":"Neural Networks"},{"issue":"340\u2013341","key":"10.1016\/j.sigpro.2020.107861_bib0036","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.ins.2016.01.023","article-title":"L1-Norm loss based twin support vector machine for data recognition","author":"Peng","year":"2016","journal-title":"Inf Sci (Ny)"},{"issue":"4","key":"10.1016\/j.sigpro.2020.107861_bib0037","doi-asserted-by":"crossref","first-page":"1327","DOI":"10.1007\/s10489-019-01596-0","article-title":"Unconstrained convex minimization based implicit lagrangian twin extreme learning machine for classification (ULTELMC)","volume":"50","author":"Borah","year":"2020","journal-title":"Applied Intelligence"},{"issue":"8","key":"10.1016\/j.sigpro.2020.107861_bib0038","doi-asserted-by":"crossref","first-page":"1914","DOI":"10.1039\/C5AY01304F","article-title":"Comparison of chemometric approaches for near-infrared spectroscopic data","volume":"8","author":"Yang","year":"2016","journal-title":"Anal. Methods"},{"key":"10.1016\/j.sigpro.2020.107861_bib0039","doi-asserted-by":"crossref","first-page":"632","DOI":"10.1016\/j.asoc.2018.01.038","article-title":"A robust semi-supervised SVM via ensemble learning","volume":"65","author":"Zhang","year":"2017","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.sigpro.2020.107861_bib0040","doi-asserted-by":"crossref","first-page":"1828","DOI":"10.1109\/TCYB.2015.2454521","article-title":"Robust semi-supervised subspace clustering via non-negative low-rank representation","volume":"46","author":"Fang","year":"2016","journal-title":"IEEE Trans Cybern"},{"key":"10.1016\/j.sigpro.2020.107861_bib0041","doi-asserted-by":"crossref","unstructured":"J.H. Krijthe, M. Loog, Robust semi-supervised least squares classification by implicit constraints, 2017a, arXiv: 1512.08240.","DOI":"10.1016\/j.patcog.2016.09.009"},{"key":"10.1016\/j.sigpro.2020.107861_bib0042","doi-asserted-by":"crossref","first-page":"993","DOI":"10.1007\/s10994-017-5626-8","article-title":"Projected estimators for robust semi-supervised classification","volume":"106","author":"Krijthe","year":"2017","journal-title":"Mach Learn"}],"container-title":["Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168420304059?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168420304059?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,11,25]],"date-time":"2022-11-25T02:05:32Z","timestamp":1669341932000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0165168420304059"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":42,"alternative-id":["S0165168420304059"],"URL":"https:\/\/doi.org\/10.1016\/j.sigpro.2020.107861","relation":{},"ISSN":["0165-1684"],"issn-type":[{"type":"print","value":"0165-1684"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robust supervised and semi-supervised twin extreme learning machines for pattern classification","name":"articletitle","label":"Article Title"},{"value":"Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.sigpro.2020.107861","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107861"}}