{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:08:30Z","timestamp":1740118110463,"version":"3.37.3"},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,7,31]],"date-time":"2018-07-31T00:00:00Z","timestamp":1532995200000},"content-version":"am","delay-in-days":211,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2018,1,1]],"date-time":"2018-01-01T00:00:00Z","timestamp":1514764800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003176","name":"Ministerio de Educaci\u00f3n, Cultura y Deporte","doi-asserted-by":"publisher","award":["PRX15\/00378"],"id":[{"id":"10.13039\/501100003176","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003329","name":"Ministerio de Econom\u00eda y Competitividad","doi-asserted-by":"publisher","award":["FIS2013-40653-P","TEC2015-69868-C2-1-R ADVENTURE"],"id":[{"id":"10.13039\/501100003329","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000006","name":"Office of Naval Research","doi-asserted-by":"publisher","award":["N62909-15-1-2011"],"id":[{"id":"10.13039\/100000006","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Signal Processing"],"published-print":{"date-parts":[[2018,1]]},"DOI":"10.1016\/j.sigpro.2017.07.030","type":"journal-article","created":{"date-parts":[[2017,7,25]],"date-time":"2017-07-25T20:17:29Z","timestamp":1501013849000},"page":"281-291","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models"],"prefix":"10.1016","volume":"142","author":[{"given":"Joaqu\u00edn","family":"M\u00edguez","sequence":"first","affiliation":[]},{"given":"In\u00e9s P.","family":"Mari\u00f1o","sequence":"additional","affiliation":[]},{"given":"Manuel A.","family":"V\u00e1zquez","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.sigpro.2017.07.030_bib0001","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/0165-1684(96)00048-5","article-title":"A linear regression approach to state-space subspace system identification","volume":"52","author":"Jansson","year":"1996","journal-title":"Signal Process."},{"issue":"2","key":"10.1016\/j.sigpro.2017.07.030_bib0002","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1109\/78.978383","article-title":"Particle filters for state-space models with the presence of unknown static parameters","volume":"50","author":"Storvik","year":"2002","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0003","series-title":"2003\u202fIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)","first-page":"VI","article-title":"Online expectation-maximization type algorithms for parameter estimation in general state space models","volume":"volume\u202f6","author":"Andrieu","year":"2003"},{"issue":"4","key":"10.1016\/j.sigpro.2017.07.030_bib0004","doi-asserted-by":"crossref","first-page":"1238","DOI":"10.1016\/j.dsp.2009.10.023","article-title":"A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems","volume":"20","author":"Ding","year":"2010","journal-title":"Digital Signal Process."},{"issue":"2","key":"10.1016\/j.sigpro.2017.07.030_bib0005","doi-asserted-by":"crossref","first-page":"585","DOI":"10.1007\/s00034-012-9463-5","article-title":"Performance analysis of the auxiliary model-based stochastic gradient parameter estimation algorithm for state-space systems with one-step state delay","volume":"32","author":"Ding","year":"2013","journal-title":"Circuits, Syst. Signal Process."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0006","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.dsp.2015.04.004","article-title":"Combining particle MCMC with Rao-Blackwellized Monte Carlo data association for parameter estimation in multiple target tracking","volume":"47","author":"Kokkala","year":"2015","journal-title":"Digital Signal Process."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0007","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1111\/j.1467-9868.2009.00736.x","article-title":"Particle Markov chain Monte Carlo methods","volume":"72","author":"Andrieu","year":"2010","journal-title":"J. R. Stat. Soc. B"},{"issue":"2","key":"10.1016\/j.sigpro.2017.07.030_bib0008","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1007\/s11222-013-9440-2","article-title":"A population monte carlo scheme with transformed weights and its application to stochastic kinetic models","volume":"25","author":"Koblents","year":"2015","journal-title":"Stat. Comput."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0009","unstructured":"D. Crisan, J. Miguez, Nested particle filters for online parameter estimation in discrete-time state-space Markov models. To appear in Bernoulli arXiv:1308.1883v3 [stat.CO]."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0010","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1214\/14-STS511","article-title":"On particle methods for parameter estimation in state-space models","volume":"30","author":"Kantas","year":"2015","journal-title":"Stat. Sci."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0011","series-title":"IEEE Transactions on Signal Processing","first-page":"4606","article-title":"Rao-Blackwellization of particle Markov chain Monte Carlo methods using forward filtering backward sampling","volume":"volume\u202f59","author":"Olsson","year":"2011"},{"issue":"15","key":"10.1016\/j.sigpro.2017.07.030_bib0012","doi-asserted-by":"crossref","first-page":"3953","DOI":"10.1109\/TSP.2014.2329270","article-title":"A particle marginal metropolis-hastings multi-target tracker","volume":"62","author":"Vu","year":"2014","journal-title":"IEEE Trans. Signal Process."},{"issue":"11","key":"10.1016\/j.sigpro.2017.07.030_bib0013","doi-asserted-by":"crossref","first-page":"1514","DOI":"10.1109\/LSP.2016.2601085","article-title":"Joint tracking and ground plane estimation","volume":"23","author":"Kwon","year":"2016","journal-title":"IEEE Signal Process. Lett."},{"issue":"18","key":"10.1016\/j.sigpro.2017.07.030_bib0014","doi-asserted-by":"crossref","first-page":"4875","DOI":"10.1109\/TSP.2016.2563387","article-title":"An introduction to twisted particle filters and parameter estimation in non-linear state-space models","volume":"64","author":"Ala-Luhtala","year":"2016","journal-title":"IEEE Trans. Signal Process."},{"issue":"1","key":"10.1016\/j.sigpro.2017.07.030_bib0015","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/S0165-1684(00)00187-0","article-title":"Markov chain Monte Carlo methods with applications to signal processing","volume":"81","author":"Fitzgerald","year":"2001","journal-title":"Signal Process."},{"issue":"2","key":"10.1016\/j.sigpro.2017.07.030_bib0016","first-page":"107","article-title":"Novel approach to nonlinear and non-Gaussian Bayesian state estimation","volume":"140","author":"Gordon","year":"1993","journal-title":"IEE Proc.-F"},{"key":"10.1016\/j.sigpro.2017.07.030_bib0017","doi-asserted-by":"crossref","unstructured":"A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential Monte Carlo Methods in Practice, Springer, New York (USA), 2001.","DOI":"10.1007\/978-1-4757-3437-9"},{"issue":"3","key":"10.1016\/j.sigpro.2017.07.030_bib0018","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1023\/A:1008935410038","article-title":"On sequential monte carlo sampling methods for bayesian filtering","volume":"10","author":"Doucet","year":"2000","journal-title":"Stat. Comput."},{"issue":"5","key":"10.1016\/j.sigpro.2017.07.030_bib0019","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1109\/MSP.2003.1236770","article-title":"Particle filtering","volume":"20","author":"Djuri\u0107","year":"2003","journal-title":"IEEE Signal Process. Mag."},{"issue":"5","key":"10.1016\/j.sigpro.2017.07.030_bib0020","doi-asserted-by":"crossref","first-page":"899","DOI":"10.1109\/JPROC.2007.893250","article-title":"An overview of existing methods and recent advances in sequential Monte Carlo","volume":"95","author":"Capp\u00e9","year":"2007","journal-title":"Proc. IEEE"},{"year":"2004","series-title":"Monte Carlo Statistical Methods","author":"Robert","key":"10.1016\/j.sigpro.2017.07.030_bib0021"},{"issue":"4","key":"10.1016\/j.sigpro.2017.07.030_bib0022","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1198\/106186004X12803","article-title":"Population monte carlo","volume":"13","author":"Capp\u00e9","year":"2004","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0023","unstructured":"N. Chopin, P.E. Jacob, O. Papaspiliopoulos, SMC2: an efficient algorithm for sequential analysis of state space models, J. R. Stat. Soc. (Statistical Methodology)."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0024","first-page":"420","article-title":"Convergence of adaptive mixtures of importance sampling schemes","author":"Douc","year":"2007","journal-title":"Annals Stat."},{"issue":"4","key":"10.1016\/j.sigpro.2017.07.030_bib0025","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1007\/s11222-008-9059-x","article-title":"Adaptive importance sampling in general mixture classes","volume":"18","author":"Capp\u00e9","year":"2008","journal-title":"Stat. Comput."},{"issue":"4","key":"10.1016\/j.sigpro.2017.07.030_bib0026","doi-asserted-by":"crossref","first-page":"798","DOI":"10.1111\/j.1467-9469.2011.00756.x","article-title":"Adaptive multiple importance sampling","volume":"39","author":"Cornuet","year":"2012","journal-title":"Scand. J. Stat."},{"issue":"3","key":"10.1016\/j.sigpro.2017.07.030_bib0027","doi-asserted-by":"crossref","first-page":"526","DOI":"10.1109\/JSTSP.2010.2048385","article-title":"Joint model selection and parameter estimation by population Monte Carlo simulation","volume":"4","author":"Hong","year":"2010","journal-title":"IEEE J. Selected Topics Signal Process."},{"issue":"16","key":"10.1016\/j.sigpro.2017.07.030_bib0028","doi-asserted-by":"crossref","first-page":"4422","DOI":"10.1109\/TSP.2015.2440215","article-title":"An adaptive population importance sampler: learning from uncertainty","volume":"63","author":"Martino","year":"2015","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0029","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.dsp.2015.05.014","article-title":"Adaptive importance sampling in signal processing","volume":"47","author":"Bugallo","year":"2015","journal-title":"Digital Signal Process."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0030","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.sigpro.2016.07.012","article-title":"Improving population Monte Carlo: alternative weighting and resampling schemes","volume":"131","author":"Elvira","year":"2017","journal-title":"Signal Process."},{"issue":"3","key":"10.1016\/j.sigpro.2017.07.030_bib0031","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1093\/biomet\/89.3.539","article-title":"A sequential particle filter method for static models","volume":"89","author":"Chopin","year":"2002","journal-title":"Biometrika"},{"issue":"3","key":"10.1016\/j.sigpro.2017.07.030_bib0032","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1111\/j.1467-9868.2006.00553.x","article-title":"Sequential monte carlo samplers","volume":"68","author":"Del Moral","year":"2006","journal-title":"J. R. Stat. Soc."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0033","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1080\/01621459.1994.10476469","article-title":"Sequential imputations and bayesian missing data problems","volume":"9","author":"Kong","year":"1994","journal-title":"J. Am. Stat. Assoc."},{"issue":"10","key":"10.1016\/j.sigpro.2017.07.030_bib0034","doi-asserted-by":"crossref","first-page":"1757","DOI":"10.1109\/LSP.2015.2432078","article-title":"Efficient multiple importance sampling estimators","volume":"22","author":"Elvira","year":"2015","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0035","series-title":"Englewood Cliffs","article-title":"Optimal filtering","author":"Anderson","year":"1979"},{"key":"10.1016\/j.sigpro.2017.07.030_bib0036","first-page":"1","article-title":"Monte carlo filter and smoother for non-gaussian nonlinear state-space models","volume":"1","author":"Kitagawa","year":"1996","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0037","series-title":"Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis","first-page":"64","article-title":"Comparison of resampling schemes for particle filtering","author":"Douc","year":"2005"},{"year":"2008","series-title":"Fundamentals of Stochastic Filtering","author":"Bain","key":"10.1016\/j.sigpro.2017.07.030_bib0038"},{"year":"2004","series-title":"Feynman\u2013Kac Formulae: Genealogical and Interacting Particle Systems with Applications","author":"Del Moral","key":"10.1016\/j.sigpro.2017.07.030_bib0039"},{"issue":"1","key":"10.1016\/j.sigpro.2017.07.030_bib0040","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1007\/s11222-011-9294-4","article-title":"On the convergence of two sequential Monte Carlo methods for maximum a posteriori sequence estimation and stochastic global optimization","volume":"23","author":"M\u00edguez","year":"2013","journal-title":"Stat. Comput."},{"issue":"491","key":"10.1016\/j.sigpro.2017.07.030_bib0041","doi-asserted-by":"crossref","first-page":"1178","DOI":"10.1198\/jasa.2010.tm09448","article-title":"Approximate Bayesian computation: a nonparametric perspective","volume":"105","author":"Blum","year":"2010","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.sigpro.2017.07.030_bib0042","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1214\/07-AOS574","article-title":"The pseudo-marginal approach for efficient Monte Carlo computations","volume":"37","author":"Andrieu","year":"2009","journal-title":"Annal. Stat."},{"key":"10.1016\/j.sigpro.2017.07.030_sbref0040","series-title":"Sequential Monte Carlo Methods in Practice","first-page":"4","article-title":"An introduction to sequential Monte Carlo methods","author":"Doucet","year":"2001"},{"key":"10.1016\/j.sigpro.2017.07.030_bib0044","unstructured":"D. Crisan, J. Miguez, G. R\u00edos, A simple scheme for the parallelisation of particle filters and its application to the tracking of complex stochastic systems. ArXiv arXiv:1407.8071v2 [stat.CO]."},{"year":"2015","series-title":"Nonlinear population Monte Carlo methods for Bayesian inference","author":"Koblents","key":"10.1016\/j.sigpro.2017.07.030_bib0045"},{"key":"10.1016\/j.sigpro.2017.07.030_bib0046","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.csda.2015.09.007","article-title":"A nonlinear population monte carlo scheme for the Bayesian estimation of parameters of \u03b1-stable distributions","volume":"95","author":"Koblents","year":"2016","journal-title":"Computational Statistics and Data Analysis"},{"issue":"4","key":"10.1016\/j.sigpro.2017.07.030_bib0047","doi-asserted-by":"crossref","first-page":"1879","DOI":"10.3150\/13-BEJ545","article-title":"Particle-kernel estimation of the filter density in state-space models","volume":"20","author":"Crisan","year":"2014","journal-title":"Bernoulli"},{"year":"2013","series-title":"Practical Linear Algebra: A Geometry Toolbox","author":"Farin","key":"10.1016\/j.sigpro.2017.07.030_bib0048"}],"container-title":["Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168417302761?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168417302761?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,5]],"date-time":"2024-04-05T23:09:07Z","timestamp":1712358547000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0165168417302761"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,1]]},"references-count":48,"alternative-id":["S0165168417302761"],"URL":"https:\/\/doi.org\/10.1016\/j.sigpro.2017.07.030","relation":{},"ISSN":["0165-1684"],"issn-type":[{"type":"print","value":"0165-1684"}],"subject":[],"published":{"date-parts":[[2018,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models","name":"articletitle","label":"Article Title"},{"value":"Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.sigpro.2017.07.030","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}