{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T07:44:49Z","timestamp":1742802289998},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2016,11,1]],"date-time":"2016-11-01T00:00:00Z","timestamp":1477958400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Signal Processing"],"published-print":{"date-parts":[[2016,11]]},"DOI":"10.1016\/j.sigpro.2016.05.021","type":"journal-article","created":{"date-parts":[[2016,5,24]],"date-time":"2016-05-24T09:27:05Z","timestamp":1464082025000},"page":"426-439","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":53,"special_numbering":"C","title":["A practical guide to CNNs and Fisher Vectors for image instance retrieval"],"prefix":"10.1016","volume":"128","author":[{"given":"Vijay","family":"Chandrasekhar","sequence":"first","affiliation":[]},{"given":"Jie","family":"Lin","sequence":"additional","affiliation":[]},{"given":"Olivier","family":"Mor\u00e8re","sequence":"additional","affiliation":[]},{"given":"Hanlin","family":"Goh","sequence":"additional","affiliation":[]},{"given":"Antoine","family":"Veillard","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.sigpro.2016.05.021_bib1","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1109\/TMM.2013.2293063","article-title":"Towards mobile document image retrieval for digital library","volume":"16","author":"Duan","year":"2014","journal-title":"IEEE Trans. Multimed."},{"issue":"7","key":"10.1016\/j.sigpro.2016.05.021_bib2","doi-asserted-by":"crossref","first-page":"1019","DOI":"10.1109\/TMM.2015.2427744","article-title":"A hybrid mobile visual search system with compact global signatures","volume":"17","author":"Chen","year":"2015","journal-title":"IEEE Trans. Multimed."},{"issue":"1","key":"10.1016\/j.sigpro.2016.05.021_bib3","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1109\/TMM.2012.2225035","article-title":"Learning to distribute vocabulary indexing for scalable visual search","volume":"15","author":"Ji","year":"2013","journal-title":"IEEE Trans. Multimed."},{"issue":"6","key":"10.1016\/j.sigpro.2016.05.021_bib4","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1109\/TMM.2015.2419973","article-title":"Weighted component hashing of binary aggregated descriptors for fast visual search","volume":"17","author":"Duan","year":"2015","journal-title":"IEEE Trans. Multimed."},{"issue":"2","key":"10.1016\/j.sigpro.2016.05.021_bib5","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1109\/TMM.2012.2231061","article-title":"Query-adaptive image search with hash codes","volume":"15","author":"Jiang","year":"2013","journal-title":"IEEE Trans. Multimed."},{"key":"10.1016\/j.sigpro.2016.05.021_bib6","doi-asserted-by":"crossref","unstructured":"F. Perronnin, Y. Liu, J. S\u00e1nchez, H. Poirier, Large-scale image retrieval with compressed Fisher vectors, in: Computer Vision and Pattern Recognition (CVPR), IEEE, San Francisco, CA, 2010, pp. 3384\u20133391.","DOI":"10.1109\/CVPR.2010.5540009"},{"issue":"3","key":"10.1016\/j.sigpro.2016.05.021_bib7","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1007\/s11263-013-0636-x","article-title":"Image classification with the fisher vector","volume":"105","author":"S\u00e1nchez","year":"2013","journal-title":"Int. J. Comput. Vis."},{"issue":"2","key":"10.1016\/j.sigpro.2016.05.021_bib8","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","article-title":"Distinctive image features from scale-invariant keypoints","volume":"60","author":"Lowe","year":"2004","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.sigpro.2016.05.021_bib9","unstructured":"A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: Neural Information Processing Systems (NIPS), 2012, pp. 1\u20139."},{"key":"10.1016\/j.sigpro.2016.05.021_bib10","unstructured":"K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, in: International Conference on Learning Representations (ICLR), 2015."},{"key":"10.1016\/j.sigpro.2016.05.021_bib11","doi-asserted-by":"crossref","unstructured":"Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: closing the gap to human-level performance in face verification, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1701\u20131708.","DOI":"10.1109\/CVPR.2014.220"},{"key":"10.1016\/j.sigpro.2016.05.021_bib12","doi-asserted-by":"crossref","unstructured":"Y. Sun, X. Wang, X. Tang, Deep learning face representation from predicting 10,000 classes, in: Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1891\u20131898.","DOI":"10.1109\/CVPR.2014.244"},{"key":"10.1016\/j.sigpro.2016.05.021_bib13","doi-asserted-by":"crossref","unstructured":"W. Ouyang, X. Wang, Joint deep learning for pedestrian detection, in: International Conference on Computer Vision (ICCV), 2013, pp. 2056\u20132063.","DOI":"10.1109\/ICCV.2013.257"},{"key":"10.1016\/j.sigpro.2016.05.021_bib14","doi-asserted-by":"crossref","unstructured":"A. Toshev, C. Szegedy, Deeppose: human pose estimation via deep neural networks, in: Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1653\u20131660.","DOI":"10.1109\/CVPR.2014.214"},{"key":"10.1016\/j.sigpro.2016.05.021_bib15","doi-asserted-by":"crossref","unstructured":"A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky, Neural Codes for Image Retrieval, in: European Conference on Computer Vision (ECCV), Springer, Cham, 2014, pp. 584\u2013599.","DOI":"10.1007\/978-3-319-10590-1_38"},{"key":"10.1016\/j.sigpro.2016.05.021_bib16","doi-asserted-by":"crossref","unstructured":"V. Chandrasekhar, J. Lin, O. Mor\u00e8re, A. Veillard, H. Goh, Compact global descriptors for visual search, in: Data Compression Conference (DCC), IEEE, Snowbird, UT, 2015, pp. 333\u2013342.","DOI":"10.1109\/DCC.2015.54"},{"key":"10.1016\/j.sigpro.2016.05.021_bib17","doi-asserted-by":"crossref","unstructured":"G. Tolias, Y. Avrithis, H. J\u00e9gou, To aggregate or not to aggregate: selective match kernels for image search, in: International Conference on Computer Vision (ICCV), 2013, pp. 1401\u20131408.","DOI":"10.1109\/ICCV.2013.177"},{"issue":"8","key":"10.1016\/j.sigpro.2016.05.021_bib18","doi-asserted-by":"crossref","first-page":"2316","DOI":"10.1016\/j.sigpro.2012.06.005","article-title":"Residual enhanced visual vector as a compact signature for mobile visual search","volume":"93","author":"Chen","year":"2013","journal-title":"Signal Process."},{"key":"10.1016\/j.sigpro.2016.05.021_bib19","doi-asserted-by":"crossref","unstructured":"J. Lin, L.-Y. Duan, T. Huang, W. Gao, Robust Fisher codes for large scale image retrieval, in: International Conference on Acoustics and Signal Processing (ICASSP), 2013.","DOI":"10.1109\/ICASSP.2013.6637904"},{"key":"10.1016\/j.sigpro.2016.05.021_bib20","doi-asserted-by":"crossref","unstructured":"H. J\u00e9gou, A. Zisserman, Triangulation embedding and democratic aggregation for image search, in: Computer Vision and Pattern Recognition (CVPR), IEEE, Columbus, OH, 2014, pp. 3310\u20133317.","DOI":"10.1109\/CVPR.2014.417"},{"key":"10.1016\/j.sigpro.2016.05.021_bib21","unstructured":"K. Mikolajczyk, Software for Computing Hessian-Affine Interest Points and SIFT Descriptor, 2010."},{"key":"10.1016\/j.sigpro.2016.05.021_bib22","doi-asserted-by":"crossref","unstructured":"A. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, Cnn features off-the-shelf: an astounding baseline for recognition, in: Computer Vision and Pattern Recognition Workshop (CVPR), 2014, pp. 806\u2013813.","DOI":"10.1109\/CVPRW.2014.131"},{"key":"10.1016\/j.sigpro.2016.05.021_bib23","doi-asserted-by":"crossref","unstructured":"H. J\u00e9gou, M. Douze, C. Schmid, Hamming embedding and weak geometric consistency for large scale image search, in: A.Z. David Forsyth, Philip Torr (Eds.), European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol. I, Springer, Marseille, France, 2008, pp. 304\u2013317.","DOI":"10.1007\/978-3-540-88682-2_24"},{"key":"10.1016\/j.sigpro.2016.05.021_bib24","unstructured":"D. Nister, H. Stewenius, Scalable recognition with a vocabulary tree, in: Computer Vision and Pattern Recognition (CVPR), vol. 2, IEEE, Washington, DC, 2006, pp. 2161\u20132168."},{"key":"10.1016\/j.sigpro.2016.05.021_bib25","doi-asserted-by":"crossref","unstructured":"J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Object retrieval with large vocabularies and fast spatial matching, in: Computer Vision and Pattern Recognition (CVPR), IEEE, Minneapolis, MN, 2007, pp. 1\u20138.","DOI":"10.1109\/CVPR.2007.383172"},{"key":"10.1016\/j.sigpro.2016.05.021_bib26","doi-asserted-by":"crossref","unstructured":"V.R. Chandrasekhar, D.M. Chen, S.S. Tsai, N.-M. Cheung, H. Chen, G. Takacs, Y. Reznik, R. Vedantham, R. Grzeszczuk, J. Bach, et al., The Stanford mobile visual search data set, in: Multimedia Systems (MMSys), ACM, New York, NY, 2011, pp. 117\u2013122.","DOI":"10.1145\/1943552.1943568"},{"key":"10.1016\/j.sigpro.2016.05.021_bib27","doi-asserted-by":"crossref","unstructured":"Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: convolutional architecture for fast feature embedding, in: Conference on Multimedia (ACMMM), ACM, New York, NY, 2014, pp. 675\u2013678.","DOI":"10.1145\/2647868.2654889"},{"key":"10.1016\/j.sigpro.2016.05.021_bib28","doi-asserted-by":"crossref","unstructured":"C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1\u20139.","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"10.1016\/j.sigpro.2016.05.021_bib29","unstructured":"R. Wu, S. Yan, Y. Shan, Q. Dang, G. Sun, Deep image: scaling up image recognition, arXiv preprint arXiv:1501.02876."},{"key":"10.1016\/j.sigpro.2016.05.021_bib30","unstructured":"T. Chilimbi, Y. Suzue, J. Apacible, K. Kalyanaraman, Project adam: building an efficient and scalable deep learning training system, in: Operating Systems Design and Implementation (OSDI), 2014, pp. 571\u2013582."},{"key":"10.1016\/j.sigpro.2016.05.021_bib31","unstructured":"Researcher, MPEG. Compact Descriptors for Visual Search (CDVS) Benchmark. Stanford Digital Repository, 2014"},{"key":"10.1016\/j.sigpro.2016.05.021_bib32","doi-asserted-by":"crossref","unstructured":"A. Vedaldi, B. Fulkerson, Vlfeat: an open and portable library of computer vision algorithms, in: Conference on Multimedia (ACMMM), ACM, Firenze, Italy, 2010, pp. 1469\u20131472.","DOI":"10.1145\/1873951.1874249"},{"issue":"4","key":"10.1016\/j.sigpro.2016.05.021_bib33","first-page":"311","article-title":"Selection of local features for visual search","volume":"28","author":"Francini","year":"2013","journal-title":"Signal Process.: Image Commun."},{"issue":"9","key":"10.1016\/j.sigpro.2016.05.021_bib34","doi-asserted-by":"crossref","first-page":"1704","DOI":"10.1109\/TPAMI.2011.235","article-title":"Aggregating local image descriptors into compact codes","volume":"34","author":"J\u00e9gou","year":"2012","journal-title":"IEEE Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.sigpro.2016.05.021_bib35","series-title":"Neural Information Processing Systems (NIPS)","first-page":"487","article-title":"Learning deep features for scene recognition using places database","author":"Zhou","year":"2014"},{"key":"10.1016\/j.sigpro.2016.05.021_bib36","doi-asserted-by":"crossref","unstructured":"J. Xiao, J. Hays, K.A. Ehinger, A. Oliva, A. Torralba, Sun database: Large-scale scene recognition from abbey to zoo, in: Computer Vision and Pattern Recognition (CVPR), IEEE, San Francisco, CA, 2010, pp. 3485\u20133492.","DOI":"10.1109\/CVPR.2010.5539970"},{"key":"10.1016\/j.sigpro.2016.05.021_bib37","doi-asserted-by":"crossref","unstructured":"A. Quattoni, A. Torralba, Recognizing indoor scenes, in: Computer Vision and Pattern Recognition (CVPR), IEEE, Miami, FL, 2009, pp. 413\u2013420.","DOI":"10.1109\/CVPRW.2009.5206537"},{"key":"10.1016\/j.sigpro.2016.05.021_bib38","doi-asserted-by":"crossref","unstructured":"J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale hierarchical image database, in: Computer Vision and Pattern Recognition (CVPR), IEEE, Miami, FL, 2009, pp. 248\u2013255.","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"10.1016\/j.sigpro.2016.05.021_bib39","doi-asserted-by":"crossref","unstructured":"F. Yang, Z. Jiang, L.S. Davis, Submodular reranking with multiple feature modalities for image retrieval, in: Asian Conference Computer Vision (ACCV), Springer, Singapore, 2014, pp. 19\u201334.","DOI":"10.1007\/978-3-319-16865-4_2"},{"key":"10.1016\/j.sigpro.2016.05.021_bib40","doi-asserted-by":"crossref","unstructured":"G. Takacs, V. Chandrasekhar, S. Tsai, D. Chen, R. Grzeszczuk, B. Girod, Unified real-time tracking and recognition with rotation-invariant fast features, in: Computer Vision and Pattern Recognition (CVPR), IEEE, San Francisco, CA, 2010, pp. 934\u2013941.","DOI":"10.1109\/CVPR.2010.5540116"},{"key":"10.1016\/j.sigpro.2016.05.021_bib41","doi-asserted-by":"crossref","unstructured":"B. Thomee, D.A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, L. Li, YFCC100M: the new data in multimedia research\", Communications of the ACM, 59(2), pp. 64-73, 2016.","DOI":"10.1145\/2812802"},{"key":"10.1016\/j.sigpro.2016.05.021_bib42","unstructured":"R. Collobert, K. Kavukcuoglu, C. Farabet, Torch7: a Matlab-like environment for machine learning, in: Neural Information Processing Systems Workshop (NIPS), 2011."},{"key":"10.1016\/j.sigpro.2016.05.021_bib43","doi-asserted-by":"crossref","unstructured":"S. Winder, G. Hua, M. Brown, Picking the best daisy, in: Computer Vision and Pattern Recognition (CVPR), IEEE, Miami, FL, 2009, pp. 178\u2013185.","DOI":"10.1109\/CVPRW.2009.5206839"},{"key":"10.1016\/j.sigpro.2016.05.021_bib44","unstructured":"CDVS Patches, \u3008http:\/\/blackhole1.stanford.edu\/vijayc\/cdvs_patches.tar\u3009, 2013."},{"key":"10.1016\/j.sigpro.2016.05.021_bib45","doi-asserted-by":"crossref","unstructured":"T. Tuytelaars, Dense interest points, in: Computer Vision and Pattern Recognition (CVPR), IEEE, 2010, pp. 2281\u20132288.","DOI":"10.1109\/CVPR.2010.5539911"},{"issue":"8","key":"10.1016\/j.sigpro.2016.05.021_bib46","doi-asserted-by":"crossref","first-page":"2369","DOI":"10.1109\/TIP.2015.2423557","article-title":"A comparison of dense region detectors for image search and fine-grained classification","volume":"24","author":"Iscen","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.sigpro.2016.05.021_bib47","doi-asserted-by":"crossref","unstructured":"Y. Gong, L. Wang, R. Guo, S. Lazebnik, Multi-scale orderless pooling of deep convolutional activation features, in: European Conference on Computer Vision (ECCV), Springer, Zurich, Switzerland, 2014, pp. 392\u2013407.","DOI":"10.1007\/978-3-319-10584-0_26"},{"key":"10.1016\/j.sigpro.2016.05.021_bib48","doi-asserted-by":"crossref","unstructured":"Z. Xu, Y. Yang, A.G. Hauptmann, A discriminative CNN video representation for event detection, in: Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1798\u20131807.","DOI":"10.1109\/CVPR.2015.7298789"},{"key":"10.1016\/j.sigpro.2016.05.021_bib49","doi-asserted-by":"crossref","unstructured":"H. J\u00e9gou, M. Douze, C. Schmid, P. P\u00e9rez, Aggregating local descriptors into a compact image representation, in: Computer Vision and Pattern Recognition (CVPR), IEEE, San Francisco, CA, 2010, pp. 3304\u20133311.","DOI":"10.1109\/CVPR.2010.5540039"},{"key":"10.1016\/j.sigpro.2016.05.021_bib50","doi-asserted-by":"crossref","unstructured":"A. Gordoa, J.A. Rodr\u00edguez-Serrano, F. Perronnin, E. Valveny, Leveraging category-level labels for instance-level image retrieval, in: Computer Vision and Pattern Recognition (CVPR), IEEE, Providence, RI, 2012, pp. 3045\u20133052.","DOI":"10.1109\/CVPR.2012.6248035"},{"key":"10.1016\/j.sigpro.2016.05.021_bib51","doi-asserted-by":"crossref","unstructured":"R. Arandjelovic, A. Zisserman, All about VLAD, in: Computer Vision and Pattern Recognition (CVPR), 2013, pp. 1578\u20131585.","DOI":"10.1109\/CVPR.2013.207"},{"key":"10.1016\/j.sigpro.2016.05.021_bib52","doi-asserted-by":"crossref","unstructured":"T. Ge, Q. Ke, J. Sun, Sparse-coded features for image retrieval, in: British Machine Vision Conference (BMVC), 2013.","DOI":"10.5244\/C.27.132"}],"container-title":["Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168416300846?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0165168416300846?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,2]],"date-time":"2019-11-02T05:37:34Z","timestamp":1572673054000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0165168416300846"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,11]]},"references-count":52,"alternative-id":["S0165168416300846"],"URL":"https:\/\/doi.org\/10.1016\/j.sigpro.2016.05.021","relation":{},"ISSN":["0165-1684"],"issn-type":[{"value":"0165-1684","type":"print"}],"subject":[],"published":{"date-parts":[[2016,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A practical guide to CNNs and Fisher Vectors for image instance retrieval","name":"articletitle","label":"Article Title"},{"value":"Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.sigpro.2016.05.021","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}