{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,10]],"date-time":"2024-08-10T15:15:03Z","timestamp":1723302903630},"reference-count":34,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51675329","51675342","51775332","51975350"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Robotics and Autonomous Systems"],"published-print":{"date-parts":[[2022,1]]},"DOI":"10.1016\/j.robot.2021.103901","type":"journal-article","created":{"date-parts":[[2021,9,27]],"date-time":"2021-09-27T10:13:03Z","timestamp":1632737583000},"page":"103901","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["Robotic picking in dense clutter via domain invariant learning from synthetic dense cluttered rendering"],"prefix":"10.1016","volume":"147","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0166-7774","authenticated-orcid":false,"given":"Wenhai","family":"Liu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1406-3315","authenticated-orcid":false,"given":"Weiming","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0125-0792","authenticated-orcid":false,"given":"Yang","family":"You","sequence":"additional","affiliation":[]},{"given":"Teng","family":"Xue","sequence":"additional","affiliation":[]},{"given":"Zhenyu","family":"Pan","sequence":"additional","affiliation":[]},{"given":"Jin","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Hu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"8","key":"10.1016\/j.robot.2021.103901_b1","doi-asserted-by":"crossref","first-page":"951","DOI":"10.1177\/0278364911436018","article-title":"Fast object localization and pose estimation in heavy clutter for robotic bin picking","volume":"31","author":"Liu","year":"2012","journal-title":"Int. J. Robot. Res."},{"issue":"26","key":"10.1016\/j.robot.2021.103901_b2","doi-asserted-by":"crossref","first-page":"eaau4984","DOI":"10.1126\/scirobotics.aau4984","article-title":"Learning ambidextrous robot grasping policies","volume":"4","author":"Mahler","year":"2019","journal-title":"Science Robotics"},{"issue":"7\u20138","key":"10.1016\/j.robot.2021.103901_b3","first-page":"560","article-title":"What are the important technologies for bin picking? Technology analysis of robots in competitions based on a set of performance metrics","volume":"34","author":"Fujita","year":"2020","journal-title":"Adv. Robot."},{"issue":"1","key":"10.1016\/j.robot.2021.103901_b4","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1109\/TASE.2016.2600527","article-title":"Analysis and observations from the first amazon picking challenge","volume":"15","author":"Correll","year":"2016","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"issue":"11","key":"10.1016\/j.robot.2021.103901_b5","doi-asserted-by":"crossref","first-page":"4916","DOI":"10.1109\/TII.2018.2800744","article-title":"Integrating different levels of automation: Lessons from winning the Amazon robotics challenge 2016","volume":"14","author":"Corbato","year":"2018","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"7","key":"10.1016\/j.robot.2021.103901_b6","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.1007\/s10514-018-9761-2","article-title":"Four aspects of building robotic systems: lessons from the Amazon Picking Challenge 2015","volume":"42","author":"Eppner","year":"2018","journal-title":"Auton. Robots"},{"issue":"4\u20135","key":"10.1016\/j.robot.2021.103901_b7","doi-asserted-by":"crossref","first-page":"705","DOI":"10.1177\/0278364914549607","article-title":"Deep learning for detecting robotic grasps","volume":"34","author":"Lenz","year":"2015","journal-title":"Int. J. Robot. Res."},{"key":"10.1016\/j.robot.2021.103901_b8","doi-asserted-by":"crossref","unstructured":"L. Pinto, A. Gupta, Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours, in: IEEE International Conference on Robotics and Automation, 2016, pp. 3406\u20133413.","DOI":"10.1109\/ICRA.2016.7487517"},{"key":"10.1016\/j.robot.2021.103901_b9","doi-asserted-by":"crossref","unstructured":"J. Mahler, F.T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, et al. Dex-net 1.0: A cloud-based network of 3d objects for robust grasp planning using a multi-armed bandit model with correlated rewards, in: IEEE International Conference on Robotics and Automation, 2016, pp. 1957\u20131964.","DOI":"10.1109\/ICRA.2016.7487342"},{"key":"10.1016\/j.robot.2021.103901_b10","series-title":"Dex-Net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics","author":"Mahler","year":"2017"},{"key":"10.1016\/j.robot.2021.103901_b11","series-title":"Dex-Net 3.0: computing robust robot vacuum suction grasp targets in point clouds using a new analytic model and deep learning","author":"Mahler","year":"2017"},{"issue":"1","key":"10.1016\/j.robot.2021.103901_b12","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1177\/0278364919887447","article-title":"Learning dexterous in-hand manipulation","volume":"39","author":"Andrychowicz","year":"2020","journal-title":"Int. J. Robot. Res."},{"key":"10.1016\/j.robot.2021.103901_b13","unstructured":"A. Zeng, S. Song, K.T. Yu, E. Donlon, F.R. Hogan, M. Bauza, et al. Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching, Int. J. Robot. Res. 0278364919868017."},{"key":"10.1016\/j.robot.2021.103901_b14","doi-asserted-by":"crossref","unstructured":"M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, Goldberg. K, Segmenting unknown 3d objects from real depth images using mask r-cnn trained on synthetic data, in: International Conference on Robotics and Automation, 2019, pp. 7283\u20137290.","DOI":"10.1109\/ICRA.2019.8793744"},{"issue":"4\u20135","key":"10.1016\/j.robot.2021.103901_b15","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1177\/0278364917713117","article-title":"RGB-D object detection and semantic segmentation for autonomous manipulation in clutter","volume":"37","author":"Schwarz","year":"2018","journal-title":"Int. J. Robot. Res."},{"issue":"4","key":"10.1016\/j.robot.2021.103901_b16","doi-asserted-by":"crossref","first-page":"3355","DOI":"10.1109\/LRA.2018.2852777","article-title":"Real-world multiobject, multigrasp detection","volume":"3","author":"Chu","year":"2018","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.robot.2021.103901_b17","doi-asserted-by":"crossref","unstructured":"J. Redmon, Angelova. A, Real-time grasp detection using convolutional neural networks, in: IEEE International Conference on Robotics and Automation, 2015, pp. 1316\u20131322.","DOI":"10.1109\/ICRA.2015.7139361"},{"key":"10.1016\/j.robot.2021.103901_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2020.101963","article-title":"A novel robotic grasp detection method based on region proposal networks","volume":"65","author":"Song","year":"2020","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.robot.2021.103901_b19","doi-asserted-by":"crossref","unstructured":"W. Liu, Z. Pan, W. Liu, Q. Shao, J. Hu, W. Wang, et al. Deep learning for picking point detection in dense cluster, in: Asian Control Conference, 2017, pp. 1644\u20131649.","DOI":"10.1109\/ASCC.2017.8287420"},{"issue":"13\u201314","key":"10.1016\/j.robot.2021.103901_b20","doi-asserted-by":"crossref","first-page":"1455","DOI":"10.1177\/0278364917735594","article-title":"Grasp pose detection in point clouds","volume":"36","author":"ten Pas","year":"2017","journal-title":"Int. J. Robot. Res."},{"key":"10.1016\/j.robot.2021.103901_b21","doi-asserted-by":"crossref","unstructured":"M. Gualtieri, A. Ten\u00a0Pas, K. Saenko, R. Platt, High precision grasp pose detection in dense clutter, in: IEEE\/RSJ International Conference on Intelligent Robots and Systems, 2016, pp. 598\u2013605.","DOI":"10.1109\/IROS.2016.7759114"},{"key":"10.1016\/j.robot.2021.103901_b22","article-title":"A real-time robotic grasping approach with oriented anchor box","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."},{"key":"10.1016\/j.robot.2021.103901_b23","unstructured":"S. Kumra, C. Kanan, Robotic grasp detection using deep convolutional neural networks, in: IEEE\/RSJ International Conference on Intelligent Robots and Systems, 017, pp. 769\u2013776."},{"issue":"4\u20135","key":"10.1016\/j.robot.2021.103901_b24","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1177\/0278364917710318","article-title":"Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection","volume":"37","author":"Levine","year":"2018","journal-title":"Int. J. Robot. Res."},{"key":"10.1016\/j.robot.2021.103901_b25","doi-asserted-by":"crossref","unstructured":"K. Fang, Y. Bai, S. Hinterstoisser, S. Savarese, M. Kalakrishnan, Multi-task domain adaptation for deep learning of instance grasping from simulation, in: IEEE International Conference on Robotics and Automation, 2018, pp. 3516\u20133523.","DOI":"10.1109\/ICRA.2018.8461041"},{"key":"10.1016\/j.robot.2021.103901_b26","doi-asserted-by":"crossref","unstructured":"K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, et al. Using simulation and domain adaptation to improve efficiency of deep robotic grasping, in: IEEE International Conference on Robotics and Automation, 2018, pp. 4243\u20134250.","DOI":"10.1109\/ICRA.2018.8460875"},{"key":"10.1016\/j.robot.2021.103901_b27","doi-asserted-by":"crossref","unstructured":"B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, A.M. Dollar, The YCB object and Model set: Towards common benchmarks for manipulation research, in: International Conference on Advanced Robotics, 2015, pp. 510\u2013517.","DOI":"10.1109\/ICAR.2015.7251504"},{"issue":"1\u20132","key":"10.1016\/j.robot.2021.103901_b28","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s10994-009-5152-4","article-title":"A theory of learning from different domains","volume":"79","author":"Ben-David","year":"2010","journal-title":"Mach. Learn."},{"key":"10.1016\/j.robot.2021.103901_b29","series-title":"Advances in Neural Information Processing Systems","first-page":"2672","article-title":"Generative adversarial nets","author":"Goodfellow","year":"2014"},{"issue":"1","key":"10.1016\/j.robot.2021.103901_b30","first-page":"2030","article-title":"Domain-adversarial training of neural networks","volume":"17","author":"Ganin","year":"2016","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.robot.2021.103901_b31","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.robot.2021.103901_b32","doi-asserted-by":"crossref","unstructured":"X. Mao, Q. Li, H. Xie, R.Y. Lau, Z. Wang, S. Paul\u00a0Smolley, Least squares generative adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2794\u20132802.","DOI":"10.1109\/ICCV.2017.304"},{"key":"10.1016\/j.robot.2021.103901_b33","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"Maaten","year":"2008","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.robot.2021.103901_b34","doi-asserted-by":"crossref","unstructured":"J.Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer, 2017, pp. 2223\u20132232.","DOI":"10.1109\/ICCV.2017.244"}],"container-title":["Robotics and Autonomous Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092188902100186X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S092188902100186X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T00:03:05Z","timestamp":1678060985000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S092188902100186X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1]]},"references-count":34,"alternative-id":["S092188902100186X"],"URL":"https:\/\/doi.org\/10.1016\/j.robot.2021.103901","relation":{},"ISSN":["0921-8890"],"issn-type":[{"value":"0921-8890","type":"print"}],"subject":[],"published":{"date-parts":[[2022,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Robotic picking in dense clutter via domain invariant learning from synthetic dense cluttered rendering","name":"articletitle","label":"Article Title"},{"value":"Robotics and Autonomous Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.robot.2021.103901","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103901"}}