{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,8]],"date-time":"2024-07-08T06:37:22Z","timestamp":1720420642614},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2021,11,1]],"date-time":"2021-11-01T00:00:00Z","timestamp":1635724800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Robotics and Autonomous Systems"],"published-print":{"date-parts":[[2021,11]]},"DOI":"10.1016\/j.robot.2021.103864","type":"journal-article","created":{"date-parts":[[2021,8,4]],"date-time":"2021-08-04T03:02:31Z","timestamp":1628046151000},"page":"103864","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Ring Gaussian Mixture Modelling and Regression for collaborative robots"],"prefix":"10.1016","volume":"145","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4828-3578","authenticated-orcid":false,"given":"Shirine","family":"El Zaatari","sequence":"first","affiliation":[]},{"given":"Weidong","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zahid","family":"Usman","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.robot.2021.103864_b1","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.procir.2016.02.080","article-title":"Process-oriented task assignment for assembly processes with human\u2013robot interaction","volume":"44","author":"M\u00fcller","year":"2016","journal-title":"Procedia CIRP"},{"key":"10.1016\/j.robot.2021.103864_b2","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1016\/j.mechatronics.2018.02.009","article-title":"Survey on human-robot collaboration in industrial settings: Safety, intuitive interfaces and applications","volume":"55","author":"Villani","year":"2018","journal-title":"Mechatronics"},{"key":"10.1016\/j.robot.2021.103864_b3","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2019.101921","article-title":"Terminology in safety of collaborative robotics","volume":"63","author":"Vicentini","year":"2020","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.robot.2021.103864_b4","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1016\/j.robot.2019.03.003","article-title":"Cobot programming for collaborative industrial tasks: An overview","volume":"116","author":"Zaatari","year":"2019","journal-title":"Robot. Auton. Syst."},{"issue":"2","key":"10.1016\/j.robot.2021.103864_b5","doi-asserted-by":"crossref","DOI":"10.3390\/robotics7020017","article-title":"Robot learning from demonstration in robotic assembly: A survey","volume":"7","author":"Zhu","year":"2018","journal-title":"Robotics"},{"key":"10.1016\/j.robot.2021.103864_b6","doi-asserted-by":"crossref","unstructured":"Z. Zhu, H. Hu, D. Gu, Robot performing peg-in-hole operations by learning from human demonstration, in: Proceedings of the 2018 10th Computer Science and Electronic Engineering, CEEC, 2018.","DOI":"10.1109\/CEEC.2018.8674203"},{"issue":"1","key":"10.1016\/j.robot.2021.103864_b7","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1007\/s10514-015-9451-2","article-title":"Construction of a 3D object recognition and manipulation database from grasp demonstrations","volume":"40","author":"Kent","year":"2016","journal-title":"Auton. Robots"},{"key":"10.1016\/j.robot.2021.103864_b8","series-title":"Proceedings of the Conference on Robot Learning","article-title":"Optimizing sequences of probabilistic manipulation skills learned from demonstration","author":"Schwenkel","year":"2020"},{"key":"10.1016\/j.robot.2021.103864_b9","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.robot.2015.03.010","article-title":"Incremental motion learning with locally modulated dynamical systems","volume":"70","author":"Kronander","year":"2015","journal-title":"Robot. Auton. Syst."},{"key":"10.1016\/j.robot.2021.103864_b10","doi-asserted-by":"crossref","unstructured":"D. Vogt, S. Stepputtis, S. Grehl, B. Jung, H.B. Amor, A system for learning continuous human-robot interactions from human-human demonstrations, in: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA, 2017.","DOI":"10.1109\/ICRA.2017.7989334"},{"key":"10.1016\/j.robot.2021.103864_b11","series-title":"Vision-based robot manipulation learning via human demonstrations","author":"Jia","year":"2020"},{"key":"10.1016\/j.robot.2021.103864_b12","series-title":"Deep Learning","first-page":"64","author":"Goodfellow","year":"2016"},{"issue":"1","key":"10.1016\/j.robot.2021.103864_b13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11370-015-0187-9","article-title":"A tutorial on task-parametrized movement learning and retrieval","volume":"9","author":"Calinon","year":"2016","journal-title":"Intell. Serv. Robot."},{"issue":"2","key":"10.1016\/j.robot.2021.103864_b14","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1109\/MRA.2010.936947","article-title":"Learning and reproduction of gestures by imitation","volume":"17","author":"Calinon","year":"2010","journal-title":"IEEE Robot. Autom. Mag."},{"key":"10.1016\/j.robot.2021.103864_b15","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1016\/j.rcim.2018.12.007","article-title":"Trajectory generation for robotic assembly operations using learning by demonstration","volume":"57","author":"Duque","year":"2019","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.robot.2021.103864_b16","doi-asserted-by":"crossref","DOI":"10.1155\/2019\/9765383","article-title":"Hierarchical task-parameterized learning from demonstration for collaborative object movement","author":"Hu","year":"2019","journal-title":"Appl. Bionics Biomech."},{"key":"10.1016\/j.robot.2021.103864_b17","unstructured":"S. Calinon, Robot learning with task-parameterized generative models, in: Proceedings of the International Symposium on Robotics Research, ISRR, 2015."},{"key":"10.1016\/j.robot.2021.103864_b18","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1007\/s10514-018-9725-6","article-title":"Robot learning of industrial assembly task via human demonstrations","volume":"43","author":"Kyrarini","year":"2019","journal-title":"Auton. Robots"},{"key":"10.1016\/j.robot.2021.103864_b19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.robot.2017.10.002","article-title":"Automated assembly skill acquisition and implementation through human demonstration","volume":"99","author":"Gu","year":"2018","journal-title":"Robot. Auton. Syst."},{"key":"10.1016\/j.robot.2021.103864_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2020.102109","article-title":"iTP-LfD: Improved task parametrised learning from demonstration for generic cobot programming","volume":"69","author":"Zaatari","year":"2021","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.robot.2021.103864_b21","doi-asserted-by":"crossref","unstructured":"K. Fischer, F. Kirstein, L.C. Jensen, N. Kruger, K. Kuklinski, M.V.a.d. Wieschen, T.R. Savarimuthu, A comparison of types of robot control for programming by demonstration, in: Proceedings of the 2016 11th ACM\/IEEE International Conference on Human-Robot Interaction, HRI, 2016.","DOI":"10.1109\/HRI.2016.7451754"},{"issue":"1","key":"10.1016\/j.robot.2021.103864_b22","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1109\/TASE.2017.2743000","article-title":"Interface design of a physical human-robot interaction system for human impedance adaptive skill transfer","volume":"15","author":"Yang","year":"2018","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.robot.2021.103864_b23","doi-asserted-by":"crossref","unstructured":"U.E. Ogenyi, G. Zhang, C. Yang, Z. Ju, H. Liu, An intuitive robot learning from human demonstration, in: International Conference on Intelligent Robotics and Applications, 2018.","DOI":"10.1007\/978-3-319-97586-3_16"},{"key":"10.1016\/j.robot.2021.103864_b24","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.robot.2017.12.001","article-title":"Robot learning from demonstrations: Emulation learning in environments with moving obstacles","volume":"101","author":"Ghalamzan","year":"2018","journal-title":"Robot. Auton. Syst."},{"issue":"6","key":"10.1016\/j.robot.2021.103864_b25","doi-asserted-by":"crossref","first-page":"1773","DOI":"10.3390\/s20061773","article-title":"Object identification for task-oriented communication with industrial robots","volume":"20","author":"Rogowsk","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.robot.2021.103864_b26","series-title":"Manufacturing part identification using computer vision and machine learning","author":"Rivera","year":"2018"},{"key":"10.1016\/j.robot.2021.103864_b27","doi-asserted-by":"crossref","unstructured":"C. Paxton, A. Hundt, F. Jonathan, K. Guerin, G.D. Hager, CoSTAR: Instructing collaborative robots with behavior trees and vision, in: Proceedings of the IEEE International Conference on Robotics and Automation, ICRA, 2017.","DOI":"10.1109\/ICRA.2017.7989070"},{"key":"10.1016\/j.robot.2021.103864_b28","doi-asserted-by":"crossref","unstructured":"C. Perez-D\u2019Arpino, J.A. Shah, C-LEARN: Learning geometric constraints from demonstrations for multi-step manipulation in shared autonomy, in: Proceedings of the 2017 IEEE International Conference on Robotics and Automation, ICRA, 2017.","DOI":"10.1109\/ICRA.2017.7989466"},{"key":"10.1016\/j.robot.2021.103864_b29","doi-asserted-by":"crossref","unstructured":"Z. Cao, H. Hu, Z. Zhao, Y. Lou, Robot programming by demonstration with local human correction for assembly, in: Proceedings of the 2019 IEEE International Conference on Robotics and Biomimetics, ROBIO, 2019.","DOI":"10.1109\/ROBIO49542.2019.8961854"},{"key":"10.1016\/j.robot.2021.103864_b30","series-title":"Development of an Interactive Robot Programming Method","author":"Willibald","year":"2020"},{"key":"10.1016\/j.robot.2021.103864_b31","doi-asserted-by":"crossref","unstructured":"A. Sena, B. Michael, M. Howard, Improving task-parameterised movement learning generalisation with frame-weighted trajectory generation, in: Proceedings of the 2019 IEEE\/RSJ International Conference on Intelligent Robots and Systems, IROS, 2019.","DOI":"10.1109\/IROS40897.2019.8967688"},{"issue":"2","key":"10.1016\/j.robot.2021.103864_b32","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1007\/s10846-019-01101-2","article-title":"Learning from demonstration based on a classification of task parameters and trajectory optimization","volume":"99","author":"Vidakovi\u0107","year":"2019","journal-title":"J. Intell. Robot. Syst."},{"issue":"1","key":"10.1016\/j.robot.2021.103864_b33","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1109\/TRO.2018.2878355","article-title":"Learning task priorities from demonstrations","volume":"35","author":"Silverio","year":"2019","journal-title":"IEEE Trans. Robot."}],"container-title":["Robotics and Autonomous Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0921889021001494?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0921889021001494?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,5]],"date-time":"2023-03-05T19:01:52Z","timestamp":1678042912000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0921889021001494"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11]]},"references-count":33,"alternative-id":["S0921889021001494"],"URL":"https:\/\/doi.org\/10.1016\/j.robot.2021.103864","relation":{},"ISSN":["0921-8890"],"issn-type":[{"value":"0921-8890","type":"print"}],"subject":[],"published":{"date-parts":[[2021,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Ring Gaussian Mixture Modelling and Regression for collaborative robots","name":"articletitle","label":"Article Title"},{"value":"Robotics and Autonomous Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.robot.2021.103864","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103864"}}