{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T10:17:18Z","timestamp":1720088238259},"reference-count":40,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,4,1]],"date-time":"2018-04-01T00:00:00Z","timestamp":1522540800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001665","name":"French National Research Agency","doi-asserted-by":"publisher","award":["ANR-14-CE27-0016"],"id":[{"id":"10.13039\/501100001665","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Robotics and Autonomous Systems"],"published-print":{"date-parts":[[2018,4]]},"DOI":"10.1016\/j.robot.2018.01.008","type":"journal-article","created":{"date-parts":[[2018,1,31]],"date-time":"2018-01-31T05:26:11Z","timestamp":1517376371000},"page":"44-53","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Complete design methodology of biomimetic safety device for cobots\u2019 prismatic joints"],"prefix":"10.1016","volume":"102","author":[{"given":"Y.","family":"Ayoubi","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0797-7669","authenticated-orcid":false,"given":"M.A.","family":"Laribi","sequence":"additional","affiliation":[]},{"given":"F.","family":"Courr\u00e8ges","sequence":"additional","affiliation":[]},{"given":"S.","family":"Zeghloul","sequence":"additional","affiliation":[]},{"given":"M.","family":"Arsicault","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.robot.2018.01.008_b1","unstructured":"F. Tobe, Why Co-Bots Will Be a Huge Innovation and Growth Driver for Robotics Industry. [Online]. Available: http:\/\/spectrum.ieee.org\/automaton\/robotics\/industrial-robots\/collaborative-robots-innovation-growth-driver."},{"issue":"12","key":"10.1016\/j.robot.2018.01.008_b2","doi-asserted-by":"crossref","first-page":"1601","DOI":"10.1016\/j.robot.2013.06.009","article-title":"Variable impedance actuators: A review","volume":"61","author":"Vanderborght","year":"2013","journal-title":"Rob. Auton. Syst."},{"issue":"8","key":"10.1016\/j.robot.2018.01.008_b3","doi-asserted-by":"crossref","first-page":"1187","DOI":"10.1016\/j.mechatronics.2012.09.011","article-title":"Double actuation architectures for rendering variable impedance in compliant robots: A review","volume":"22","author":"Tagliamonte","year":"2012","journal-title":"Mechatronics"},{"issue":"2","key":"10.1016\/j.robot.2018.01.008_b4","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1109\/MRA.2004.1310938","article-title":"Playing it safe","volume":"11","author":"Zinn","year":"2004","journal-title":"IEEE Robot. Autom. Mag."},{"issue":"1","key":"10.1016\/j.robot.2018.01.008_b5","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/S1000-9361(08)60075-8","article-title":"Adaptive impedance-controlled manipulator based on collision detection","volume":"22","author":"Jianbin","year":"2009","journal-title":"Chinese J. Aeronaut."},{"key":"10.1016\/j.robot.2018.01.008_b6","doi-asserted-by":"crossref","unstructured":"S. Wolf, G. Hirzingher, G. Hirzinger, A new variable stiffness design: maching requirements of the next robot generation, in: Icra08, 2008, pp. 1741\u20131746.","DOI":"10.1109\/ROBOT.2008.4543452"},{"key":"10.1016\/j.robot.2018.01.008_b7","unstructured":"J.L. Blanco, D. Garc, AVASTT: A new variable stiffness actuator with torque threshold, in: ROBOT2013: First Iberian Robotics Conference 2014, vol. 252."},{"key":"10.1016\/j.robot.2018.01.008_b8","doi-asserted-by":"crossref","unstructured":"G. Grioli, R. Schiavi, S. Sen, A. Bicchi, VSA-II: Variable stiffness actuation for safe and performing robots interacting with humans, in: IEEE Conf. Robot. Autom., 2008, pp. 2171\u20132176.","DOI":"10.1109\/ROBOT.2008.4543528"},{"key":"10.1016\/j.robot.2018.01.008_b9","doi-asserted-by":"crossref","unstructured":"G.A. Pratt, M.M. Williamson, Series elastic actuators, in: IEEE\/RSJ Int. Conf. Intell. Robot. Syst. \u2019Human Robot Interact. Coop. Robot. vol. 1, no. 1524, 1995, pp. 399\u2013406.","DOI":"10.1109\/IROS.1995.525827"},{"issue":"1","key":"10.1016\/j.robot.2018.01.008_b10","first-page":"1","article-title":"Forward and inverse dynamics of the biped PASIBOT","volume":"11","author":"Corral","year":"2014","journal-title":"Int. J. Adv. Robot. Syst."},{"issue":"1\u20132","key":"10.1016\/j.robot.2018.01.008_b11","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1162\/1064546053279017","article-title":"New robotics: Design principles for intelligent systems","volume":"11","author":"Pfeifer","year":"2005","journal-title":"Artif. Life"},{"key":"10.1016\/j.robot.2018.01.008_b12","doi-asserted-by":"crossref","unstructured":"O. Eiberger, S. Haddadin, M. Weis, A. Albu-Sch\u00e4ffer, G. Hirzinger, On joint design with intrinsic variable compliance: Derivation of the DLR QA-joint, in: Proc. - IEEE Int. Conf. Robot. Autom., 2010, pp. 1687\u20131694.","DOI":"10.1109\/ROBOT.2010.5509662"},{"key":"10.1016\/j.robot.2018.01.008_b13","doi-asserted-by":"crossref","unstructured":"K. Koganezawa, T. Inaba, T. Nakazawa, Stiffness and angle control of antagonistially driven joint, in: Proc. First IEEE\/RAS-EMBS Int. Conf. Biomed. Robot. Biomechatronics, 2006, BioRob 2006, vol. 2006, 2006, pp. 1007\u20131013.","DOI":"10.1109\/BIOROB.2006.1639223"},{"issue":"1","key":"10.1016\/j.robot.2018.01.008_b14","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/S0094-114X(98)00026-3","article-title":"Mechanics and stiffness limitations of a variable stiffness actuator for use in prosthetic limbs","volume":"34","author":"English","year":"1999","journal-title":"Mech. Mach. Theory"},{"key":"10.1016\/j.robot.2018.01.008_b15","doi-asserted-by":"crossref","unstructured":"E. Torres-jara, J. Banks, A simple and scalable force actuator, in: Int. Simp. Robot., 2004.","DOI":"10.21236\/ADA434149"},{"issue":"4\u20135","key":"10.1016\/j.robot.2018.01.008_b16","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1177\/0278364904042193","article-title":"A new actuation approach for human friendly robot design","volume":"23","author":"Zinn","year":"2004","journal-title":"Int. J. Rob. Res."},{"issue":"10","key":"10.1016\/j.robot.2018.01.008_b17","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.1016\/j.mechmachtheory.2007.10.004","article-title":"Safe link mechanism based on nonlinear stiffness for collision safety","volume":"43","author":"Park","year":"2008","journal-title":"Mech. Mach. Theory"},{"issue":"3","key":"10.1016\/j.robot.2018.01.008_b18","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1109\/MRA.2009.933629","article-title":"Compliant actuator designs","volume":"16","author":"Ham","year":"2009","journal-title":"IEEE Robot. Autom. Mag."},{"key":"10.1016\/j.robot.2018.01.008_b19","first-page":"1","article-title":"A framework of designing compliant mechanisms with nonlinear stiffness characteristics","author":"Hao","year":"2017","journal-title":"Microsyst. Technol."},{"issue":"4","key":"10.1016\/j.robot.2018.01.008_b20","doi-asserted-by":"crossref","first-page":"41008","DOI":"10.1115\/1.4032592","article-title":"Extended static modeling and analysis of compliant compound parallelogram mechanisms considering the initial internal axial force *","volume":"8","author":"Hao","year":"2016","journal-title":"J. Mech. Robot."},{"issue":"4","key":"10.1016\/j.robot.2018.01.008_b21","doi-asserted-by":"crossref","first-page":"41016","DOI":"10.1115\/1.4029556","article-title":"Nonlinear analytical modeling and characteristic analysis of a class of compound multibeam parallelogram mechanisms","volume":"7","author":"Hao","year":"2015","journal-title":"J. Mech. Robot."},{"issue":"11","key":"10.1016\/j.robot.2018.01.008_b22","doi-asserted-by":"crossref","first-page":"367","DOI":"10.3390\/app6110367","article-title":"Feasibility study of a gripper with thermally controlled stiffness of compliant jaws","volume":"6","author":"Hao","year":"2016","journal-title":"Appl. Sci."},{"key":"10.1016\/j.robot.2018.01.008_b23","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.precisioneng.2016.12.013","article-title":"Design of a stiffness-adjustable compliant linear-motion mechanism","volume":"48","author":"Zhao","year":"2017","journal-title":"Precis. Eng."},{"issue":"12","key":"10.1016\/j.robot.2018.01.008_b24","doi-asserted-by":"crossref","first-page":"1970","DOI":"10.1016\/j.mechmachtheory.2011.07.002","article-title":"Design of an adjustable-stiffness spring: Mathematical modeling and simulation, fabrication and experimental validation","volume":"46","author":"Gonzalez\u00a0Rodriguez","year":"2011","journal-title":"Mech. Mach. Theory"},{"issue":"12","key":"10.1016\/j.robot.2018.01.008_b25","doi-asserted-by":"crossref","first-page":"122302","DOI":"10.1115\/1.4028705","article-title":"Linear variable-stiffness mechanisms based on preloaded curved beams","volume":"136","author":"Wu","year":"2014","journal-title":"J. Mech. Des."},{"key":"10.1016\/j.robot.2018.01.008_b26","doi-asserted-by":"crossref","unstructured":"T. Wu, Design and analysis of a linear elastic mechanism with adjustable stiffness, 2015, pp. 1084\u20131089.","DOI":"10.1109\/AIM.2015.7222684"},{"key":"10.1016\/j.robot.2018.01.008_b27","unstructured":"HIC Tolerance Levels Correlated To Brain Injury. [Online]. Available: http:\/\/www.eurailsafe.net\/subsites\/operas\/HTML\/appendix\/Table14.htm. (Accessed 03 June 2015))."},{"key":"10.1016\/j.robot.2018.01.008_b28","unstructured":"I. 15066 ISO TC 184\/SC2\/WG3, Robots and Robotic Devices \u2013Industrial Safety Requirements Collaborative Industrial Robots, 2012."},{"key":"10.1016\/j.robot.2018.01.008_b29","unstructured":"S. Haddadin, A. Albu-Sch\u00e4ffer, G. Hirzinger, The role of the robot mass and velocity in physical human\u2013robot interaction - Part I: Non-constrained blunt impacts, in: Proc. - IEEE Int. Conf. Robot. Autom. no. 11838, 2008, pp. 1331\u20131338."},{"issue":"1","key":"10.1016\/j.robot.2018.01.008_b30","first-page":"1","article-title":"A flexible multibody model of a safety robot arm for experimental validation and analysis of design parameters","volume":"9","author":"L\u00f3pez-Mart\u00ednez","year":"2013","journal-title":"J. Comput. Nonlinear Dyn."},{"key":"10.1016\/j.robot.2018.01.008_b31","doi-asserted-by":"crossref","unstructured":"S.W. Rouhana, D.C. Viano, E.A. Jedrzejczak, J.D. McCleary, Assessing Submarining and Abdominal Injury Risk in the Hybrid III Family of Dummies, SAE Technical Paper 1989.","DOI":"10.4271\/892440"},{"issue":"2","key":"10.1016\/j.robot.2018.01.008_b32","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00197315","article-title":"Optimal control of antagonistic muscle stiffness during voluntary movements","volume":"71","author":"Lan","year":"1994","journal-title":"Biol. Cybernet."},{"key":"10.1016\/j.robot.2018.01.008_b33","doi-asserted-by":"crossref","unstructured":"S.Z.F. Courreges, M.A. Laribi, M. Arsicault, An in vivo experiment to assess the validity of the log linearized hunt-crossley model for contacts of robots with the human abdomen, in: 4th IFToMM International Symposium on Robotics, 2015.","DOI":"10.1007\/978-3-319-22368-1_21"},{"key":"10.1016\/j.robot.2018.01.008_b34","doi-asserted-by":"crossref","unstructured":"Y. Ayoubi, M.A. Laribi, F. Courr\u00e8ges, S. Zeghloul, M. Arsicault, A complete methodology to design a safety mechanism for prismatic joint implementation, in: IEEE\/RSJ Int. Conf. Intell. Robot. Syst., 2016, pp. 304\u2013309.","DOI":"10.1109\/IROS.2016.7759071"},{"key":"10.1016\/j.robot.2018.01.008_b35","series-title":"The Biomedical Engineering HandBook, vol. 2","article-title":"Biomechanics of chest and abdomen impact","author":"Viano","year":"1999"},{"key":"10.1016\/j.robot.2018.01.008_b36","unstructured":"J.-J.P.J.-J. Park, H.-S.K.H.-S. Kim, J.-B.S.J.-B. Song, Safe robot arm with safe joint mechanism using nonlinear spring system for collision safety, in: 2009 IEEE Int. Conf. Robot. Autom., 2009, pp. 3371\u20133376."},{"issue":"3","key":"10.1016\/j.robot.2018.01.008_b37","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1007\/s12369-010-0048-9","article-title":"Intrinsically safe robot arm: Adjustable static balancing and low power actuation","volume":"2","author":"Vermeulen","year":"2010","journal-title":"Int. J. Soc. Robot."},{"issue":"4","key":"10.1016\/j.robot.2018.01.008_b38","first-page":"0","article-title":"Assessing the danger of robot impact","volume":"16","author":"Gao","year":"2009","journal-title":"IEEE Robot. Autom. Mag."},{"issue":"6","key":"10.1016\/j.robot.2018.01.008_b39","doi-asserted-by":"crossref","first-page":"880","DOI":"10.1016\/j.mechmachtheory.2010.01.001","article-title":"Variable stiffness mechanism for human-friendly robots","volume":"45","author":"Hyun","year":"2010","journal-title":"Mech. Mach. Theory"},{"key":"10.1016\/j.robot.2018.01.008_b40","doi-asserted-by":"crossref","unstructured":"J. Park, S. Haddadin, J. Song, A. Albu-sch, Designing optimally safe robot surface properties for minimizing the stress characteristics of human-robot collisions, in: Int. Conf. Robot. Autom., 2011, pp. 5413\u20135420.","DOI":"10.1109\/ICRA.2011.5980282"}],"container-title":["Robotics and Autonomous Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0921889017304396?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0921889017304396?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,10,9]],"date-time":"2019-10-09T21:30:59Z","timestamp":1570656659000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0921889017304396"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,4]]},"references-count":40,"alternative-id":["S0921889017304396"],"URL":"https:\/\/doi.org\/10.1016\/j.robot.2018.01.008","relation":{},"ISSN":["0921-8890"],"issn-type":[{"value":"0921-8890","type":"print"}],"subject":[],"published":{"date-parts":[[2018,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Complete design methodology of biomimetic safety device for cobots\u2019 prismatic joints","name":"articletitle","label":"Article Title"},{"value":"Robotics and Autonomous Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.robot.2018.01.008","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}