{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T11:17:28Z","timestamp":1724152648609},"reference-count":71,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,11]],"date-time":"2023-09-11T00:00:00Z","timestamp":1694390400000},"content-version":"vor","delay-in-days":133,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.ress.2023.109107","type":"journal-article","created":{"date-parts":[[2023,1,21]],"date-time":"2023-01-21T07:15:42Z","timestamp":1674285342000},"page":"109107","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["Failure diagnosis of a compressor subjected to surge events: A data-driven framework"],"prefix":"10.1016","volume":"233","author":[{"given":"Leonardo","family":"Leoni","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4695-5956","authenticated-orcid":false,"given":"Filippo","family":"De Carlo","sequence":"additional","affiliation":[]},{"given":"Mohammad Mahdi","family":"Abaei","sequence":"additional","affiliation":[]},{"given":"Ahmad","family":"BahooToroody","sequence":"additional","affiliation":[]},{"given":"Mario","family":"Tucci","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ress.2023.109107_bib0001","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2019.107002","article-title":"A review of failure modes, condition monitoring and fault diagnosis methods for large-scale wind turbine bearings","volume":"149","author":"Liu","year":"2020","journal-title":"Measurement"},{"issue":"5","key":"10.1016\/j.ress.2023.109107_bib0002","doi-asserted-by":"crossref","first-page":"1849","DOI":"10.1016\/j.ymssp.2010.12.007","article-title":"Comparative analysis of neural network and regression based condition monitoring approaches for wind turbine fault detection","volume":"25","author":"Schlechtingen","year":"2011","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2023.109107_bib0003","series-title":"2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS","first-page":"3293","article-title":"Review of various methods in improvement in speed, power & efficiency of induction motor","author":"Wadibhasme","year":"2017"},{"key":"10.1016\/j.ress.2023.109107_bib0004","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2020.106908","article-title":"Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: a state-of-the-art review","volume":"144","author":"Gangsar","year":"2020","journal-title":"Mech Syst Signal Process"},{"issue":"5","key":"10.1016\/j.ress.2023.109107_bib0005","doi-asserted-by":"crossref","first-page":"1454","DOI":"10.1109\/TIA.2003.816474","article-title":"Rail defect diagnosis using wavelet packet decomposition","volume":"39","author":"Toliyat","year":"2003","journal-title":"IEEE Trans Ind Appl"},{"issue":"1","key":"10.1016\/j.ress.2023.109107_bib0006","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/S0951-8320(02)00166-7","article-title":"A reliability centered approach to remote condition monitoring. A railway points case study","volume":"80","author":"M\u00e1rquez","year":"2003","journal-title":"Reliab Eng Syst Saf"},{"issue":"4","key":"10.1016\/j.ress.2023.109107_bib0007","doi-asserted-by":"crossref","first-page":"782","DOI":"10.1007\/s10033-017-0150-0","article-title":"Comprehensive overview on computational intelligence techniques for machinery condition monitoring and fault diagnosis","volume":"30","author":"Zhang","year":"2017","journal-title":"Chinese J Mech Eng"},{"issue":"1","key":"10.1016\/j.ress.2023.109107_bib0008","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1007\/s13198-019-00927-1","article-title":"Development of a risk-based maintenance decision making approach for automotive production line","volume":"11","author":"Soltanali","year":"2020","journal-title":"Int J Syst Assur Eng Manag"},{"issue":"5","key":"10.1016\/j.ress.2023.109107_bib0009","doi-asserted-by":"crossref","first-page":"905","DOI":"10.1016\/j.ress.2008.10.001","article-title":"A multi-criteria decision model to determine inspection intervals of condition monitoring based on delay time analysis","volume":"94","author":"Ferreira","year":"2009","journal-title":"Reliab Eng Syst Saf"},{"issue":"4","key":"10.1016\/j.ress.2023.109107_bib0010","doi-asserted-by":"crossref","first-page":"963","DOI":"10.1109\/TIA.2005.851001","article-title":"Diagnosis tool for motor condition monitoring","volume":"41","author":"Ilonen","year":"2005","journal-title":"IEEE Trans Ind Appl"},{"issue":"2","key":"10.1016\/j.ress.2023.109107_bib0011","first-page":"491","article-title":"A new hybrid image denoising method","volume":"2","author":"Roy","year":"2010","journal-title":"Int J Inf Technol Knowl Manag"},{"issue":"2","key":"10.1016\/j.ress.2023.109107_bib0012","doi-asserted-by":"crossref","first-page":"2659","DOI":"10.1016\/j.matpr.2017.02.140","article-title":"Vibration analysis & condition monitoring for rotating machines: a review","volume":"4","author":"Vishwakarma","year":"2017","journal-title":"Mater Today: Proc"},{"issue":"2","key":"10.1016\/j.ress.2023.109107_bib0013","first-page":"91","article-title":"Signal denoising using empirical mode decomposition and higher order statistics","volume":"4","author":"Tsolis","year":"2011","journal-title":"Int J Signal Process Image Process Pattern Recognit"},{"key":"10.1016\/j.ress.2023.109107_bib0014","first-page":"1","article-title":"Predictive monitoring of incipient faults in rotating machinery: a systematic review from data acquisition to artificial intelligence","author":"Saini","year":"2022","journal-title":"Arch Comput Meth Eng"},{"key":"10.1016\/j.ress.2023.109107_bib0015","series-title":"2021 29th Mediterranean Conference on Control and Automation (MED)","first-page":"65","article-title":"Microcontroller realization of an induction motors fault detection method based on FFT and statistics of fractional moments","author":"Morozov","year":"2021"},{"key":"10.1016\/j.ress.2023.109107_bib0016","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.apacoust.2014.08.007","article-title":"A novel robust automated FFT-based segmentation and features selection algorithm for acoustic emission condition based monitoring systems","volume":"88","author":"Gowid","year":"2015","journal-title":"Appl Acoust"},{"key":"10.1016\/j.ress.2023.109107_bib0017","unstructured":"P. Sparis and G. Vachtsevanos, \u201cAutomatic diagnostic feature generation via the Fast Fourier Transform,\u201d Citeseer."},{"issue":"1","key":"10.1016\/j.ress.2023.109107_bib0018","doi-asserted-by":"crossref","first-page":"1","DOI":"10.21595\/mme.2022.22364","article-title":"Fault identification and remaining useful life prediction of bearings using Poincare maps, fast Fourier transform and convolutional neural networks","volume":"8","author":"Majali","year":"2022","journal-title":"Math Model Eng"},{"issue":"3","key":"10.1016\/j.ress.2023.109107_bib0019","doi-asserted-by":"crossref","first-page":"1453","DOI":"10.1109\/TDEI.2015.005532","article-title":"Denoising of acoustic partial discharge signals corrupted with random noise","volume":"23","author":"Hussein","year":"2016","journal-title":"IEEE Trans Dielectr Electr Insul"},{"key":"10.1016\/j.ress.2023.109107_bib0020","series-title":"Advances in asset management and condition monitoring","first-page":"1195","article-title":"Rolling element bearing fault diagnosis based on the wavelet packet transform and time-delay correlation demodulation analysis","author":"Zhang","year":"2020"},{"key":"10.1016\/j.ress.2023.109107_bib0021","series-title":"2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS)","first-page":"419","article-title":"Deep learning based fault classification algorithm for roller bearings using time-frequency localized features","author":"Bera","year":"2021"},{"issue":"1","key":"10.1016\/j.ress.2023.109107_bib0022","doi-asserted-by":"crossref","first-page":"585","DOI":"10.1007\/s00170-020-06476-3","article-title":"An efficient short-time Fourier transform algorithm for grinding wheel condition monitoring through acoustic emission","volume":"113","author":"Lopes","year":"2021","journal-title":"Int J Adv Manuf Technol"},{"key":"10.1016\/j.ress.2023.109107_bib0023","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.ress.2017.09.025","article-title":"Condition monitoring of a steam turbine generator using wavelet spectrum based control chart","volume":"184","author":"Bae","year":"2019","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2023.109107_bib0024","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.ress.2018.02.013","article-title":"Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers","volume":"184","author":"Jim\u00e9nez","year":"2019","journal-title":"Reliab Eng Syst Saf"},{"issue":"3","key":"10.1016\/j.ress.2023.109107_bib0025","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1177\/14759217211013535","article-title":"Structural damage detection method based on the complete ensemble empirical mode decomposition with adaptive noise: a model steel truss bridge case study","volume":"21","author":"Mousavi","year":"2022","journal-title":"Struct Health Monitor"},{"issue":"1971","key":"10.1016\/j.ress.2023.109107_bib0026","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1098\/rspa.1998.0193","article-title":"The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis","volume":"454","author":"Huang","year":"1998","journal-title":"Proc Math Phys Eng Sci"},{"key":"10.1016\/j.ress.2023.109107_bib0027","article-title":"Fault diagnosis of intershaft bearing using variational mode decomposition with TAGA optimization","volume":"2021","author":"Tian","year":"2021","journal-title":"Noise Control"},{"issue":"3","key":"10.1016\/j.ress.2023.109107_bib0028","doi-asserted-by":"crossref","DOI":"10.1115\/1.4051344","article-title":"Dynamic response analysis of gearbox to improve fault detection using empirical mode decomposition and artificial neural network techniques","volume":"7","author":"Desavale","year":"2021","journal-title":"ASCE-ASME J Risk Uncert Engrg Sys Part B Mech Engrg"},{"key":"10.1016\/j.ress.2023.109107_bib0029","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1016\/j.psep.2019.01.016","article-title":"A condition monitoring based signal filtering approach for dynamic time dependent safety assessment of natural gas distribution process","volume":"123","author":"BahooToroody","year":"2019","journal-title":"Process Saf Environ Prot"},{"issue":"2","key":"10.1016\/j.ress.2023.109107_bib0030","first-page":"e12762","article-title":"Application of multivariate signal analysis in vibration-based condition monitoring of wind turbine gearbox","volume":"31","author":"Rafiq","year":"2021","journal-title":"Int Trans Electric Energy Syst"},{"issue":"11","key":"10.1016\/j.ress.2023.109107_bib0031","first-page":"1248","article-title":"Bearing fault classification using ensemble empirical mode decomposition and convolutional neural network","volume":"10","author":"Nishat Toma","year":"2021","journal-title":"Electronics (Basel)"},{"issue":"1","key":"10.1016\/j.ress.2023.109107_bib0032","doi-asserted-by":"crossref","DOI":"10.1088\/1742-6596\/1983\/1\/012019","article-title":"Fault simulation and forecast of helical cylindrical gear of reducer based on ADAMS","volume":"1983","author":"Tang","year":"2021","journal-title":"J Phys Conf Ser"},{"key":"10.1016\/j.ress.2023.109107_bib0033","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.106966","article-title":"Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation","volume":"201","author":"BahooToroody","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2023.109107_bib0034","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.ress.2018.02.022","article-title":"State of health prediction of lithium-ion batteries: multiscale logic regression and Gaussian process regression ensemble","volume":"174","author":"Yu","year":"2018","journal-title":"Reliab Eng Syst Saf"},{"issue":"12","key":"10.1016\/j.ress.2023.109107_bib0035","doi-asserted-by":"crossref","first-page":"312","DOI":"10.3390\/machines9120312","article-title":"A new hybrid ensemble deep learning model for train axle temperature short term forecasting","volume":"9","author":"Yan","year":"2021","journal-title":"Machines"},{"key":"10.1016\/j.ress.2023.109107_bib0036","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.110417","article-title":"Ensemble empirical mode decomposition energy moment entropy and enhanced long short-term memory for early fault prediction of bearing","volume":"188","author":"Gao","year":"2022","journal-title":"Measurement"},{"issue":"9","key":"10.1016\/j.ress.2023.109107_bib0037","doi-asserted-by":"crossref","first-page":"4668","DOI":"10.3390\/app12094668","article-title":"Synthetical modal parameters identification method of damped oscillation signals in power system","volume":"12","author":"Li","year":"2022","journal-title":"Appl Sci"},{"key":"10.1016\/j.ress.2023.109107_bib0038","series-title":"Annual Conference of the PHM society","article-title":"A comparison of feature selection and feature extraction techniques for condition monitoring of a hydraulic actuator","volume":"9","author":"Adams","year":"2017"},{"key":"10.1016\/j.ress.2023.109107_bib0039","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.procir.2018.09.072","article-title":"Dimensionality reduction of sensorial features by principal component analysis for ANN machine learning in tool condition monitoring of CFRP drilling","volume":"78","author":"Caggiano","year":"2018","journal-title":"Procedia CIRP"},{"key":"10.1016\/j.ress.2023.109107_bib0040","series-title":"2018 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","first-page":"1","article-title":"Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to an induction motor","author":"Ramirez-Chavez","year":"2018"},{"key":"10.1016\/j.ress.2023.109107_bib0041","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.ymssp.2016.08.002","article-title":"On-line manipulator tool condition monitoring based on vibration analysis","volume":"89","author":"Gierlak","year":"2017","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2023.109107_bib0042","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/j.ymssp.2016.11.019","article-title":"Fusion information entropy method of rolling bearing fault diagnosis based on n-dimensional characteristic parameter distance","volume":"88","author":"Ai","year":"2017","journal-title":"Mech Syst Signal Process"},{"issue":"1","key":"10.1016\/j.ress.2023.109107_bib0043","doi-asserted-by":"crossref","first-page":"57","DOI":"10.3390\/e22010057","article-title":"Multi-domain entropy-random forest method for the fusion diagnosis of inter-shaft bearing faults with acoustic emission signals","volume":"22","author":"Tian","year":"2019","journal-title":"Entropy"},{"key":"10.1016\/j.ress.2023.109107_bib0044","series-title":"2014 science and information conference","first-page":"372","article-title":"A survey of feature selection and feature extraction techniques in machine learning","author":"Khalid","year":"2014"},{"key":"10.1016\/j.ress.2023.109107_bib0045","article-title":"Neighbourhood components analysis","volume":"17","author":"Goldberger","year":"2004"},{"key":"10.1016\/j.ress.2023.109107_bib0046","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.eswa.2018.06.031","article-title":"Classification of focal and non-focal EEG signals using neighborhood component analysis and machine learning algorithms","volume":"113","author":"Raghu","year":"2018","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.ress.2023.109107_bib0047","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.108323","article-title":"An automated faults classification method based on binary pattern and neighborhood component analysis using induction motor","volume":"168","author":"Yaman","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.ress.2023.109107_bib0048","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1016\/j.ymssp.2015.04.037","article-title":"Bearing fault recognition method based on neighbourhood component analysis and coupled hidden Markov model","volume":"66","author":"Zhou","year":"2016","journal-title":"Mech Syst Signal Process"},{"issue":"23","key":"10.1016\/j.ress.2023.109107_bib0049","doi-asserted-by":"crossref","first-page":"6742","DOI":"10.3390\/s20236742","article-title":"Wind turbine gearbox condition monitoring based on class of support vector regression models and residual analysis","volume":"20","author":"Dhiman","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.ress.2023.109107_bib0050","series-title":"Machine learning: a probabilistic perspective","author":"Murphy","year":"2012"},{"key":"10.1016\/j.ress.2023.109107_bib0051","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.ress.2018.02.012","article-title":"Reliable multiple combined fault diagnosis of bearings using heterogeneous feature models and multiclass support vector Machines","volume":"184","author":"Islam","year":"2019","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2023.109107_bib0052","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108082","article-title":"A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery","volume":"217","author":"Tang","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"issue":"21","key":"10.1016\/j.ress.2023.109107_bib0053","doi-asserted-by":"crossref","first-page":"5979","DOI":"10.3390\/s20215979","article-title":"Decision tree-based classification for Planetary Gearboxes\u2019 condition monitoring with the use of vibration data in multidimensional symptom space","volume":"20","author":"Lipinski","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.ress.2023.109107_bib0054","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.pisc.2016.04.068","article-title":"Feature selection and classification of mechanical fault of an induction motor using random forest classifier","volume":"8","author":"Patel","year":"2016","journal-title":"Perspect Sci"},{"key":"10.1016\/j.ress.2023.109107_bib0055","article-title":"Fault diagnosis based on extremely randomized trees in wireless sensor networks","volume":"205","author":"Saeed","year":"2021"},{"key":"10.1016\/j.ress.2023.109107_bib0056","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108445","article-title":"Anomaly detection and diagnosis for wind turbines using long short-term memory-based stacked denoising autoencoders and XGBoost","volume":"222","author":"Zhang","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2023.109107_bib0057","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108528","article-title":"Bearing remaining useful life prediction with convolutional long short-term memory fusion networks","volume":"224","author":"Wan","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2023.109107_bib0058","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108405","article-title":"Semi-supervised clustering-based method for fault diagnosis and prognosis: a case study","volume":"222","author":"Azar","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2023.109107_bib0059","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108179","article-title":"Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion","volume":"218","author":"Zhu","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2023.109107_bib0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.107396","article-title":"Life prediction of lithium-ion batteries based on stacked denoising autoencoders","volume":"208","author":"Xu","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2023.109107_bib0061","doi-asserted-by":"crossref","DOI":"10.1155\/2019\/8015295","article-title":"An improved empirical mode decomposition method using variable window median filter for early fault detection in electric motors","volume":"2019","author":"Karatoprak","year":"2019","journal-title":"Math Probl Eng"},{"issue":"3","key":"10.1016\/j.ress.2023.109107_bib0062","doi-asserted-by":"crossref","first-page":"211","DOI":"10.6029\/smartcr.2014.03.007","article-title":"Feature selection: a literature review","volume":"4","author":"Kumar","year":"2014","journal-title":"SmartCR"},{"issue":"1","key":"10.1016\/j.ress.2023.109107_bib0063","doi-asserted-by":"crossref","first-page":"161","DOI":"10.4304\/jcp.7.1.161-168","article-title":"Neighborhood component feature selection for high-dimensional data","volume":"7","author":"Yang","year":"2012","journal-title":"J Comput"},{"key":"10.1016\/j.ress.2023.109107_bib0064","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.isprsjprs.2016.01.011","article-title":"Random forest in remote sensing: a review of applications and future directions","volume":"114","author":"Belgiu","year":"2016","journal-title":"ISPRS J Photogramm Remote Sens"},{"issue":"7","key":"10.1016\/j.ress.2023.109107_bib0065","doi-asserted-by":"crossref","first-page":"729","DOI":"10.1016\/j.ijar.2010.02.003","article-title":"A fuzzy random forest","volume":"51","author":"Bonissone","year":"2010","journal-title":"Int J Approx Reason"},{"key":"10.1016\/j.ress.2023.109107_bib0066","series-title":"2019 27th European signal processing conference (EUSIPCO)","first-page":"1","article-title":"Random forest on an embedded device for real-time machine state classification","author":"K\u00fcppers","year":"2019"},{"issue":"12","key":"10.1016\/j.ress.2023.109107_bib0067","doi-asserted-by":"crossref","first-page":"6166","DOI":"10.1016\/j.csda.2006.12.043","article-title":"Classification by ensembles from random partitions of high-dimensional data","volume":"51","author":"Ahn","year":"2007","journal-title":"Comput Stat Data Anal"},{"issue":"2","key":"10.1016\/j.ress.2023.109107_bib0068","first-page":"103","article-title":"Predicting highway construction costs: comparison of the performance of random forest, neural network and support vector machine models","volume":"4","author":"Meharie","year":"2020","journal-title":"J Soft Comput Civil Eng"},{"key":"10.1016\/j.ress.2023.109107_bib0069","article-title":"Machine learning-aided engineering services\u2019 cost overruns prediction in high-rise residential building projects: application of random forest regression","volume":"50","author":"Shoar","year":"2022","journal-title":"J Build Eng"},{"issue":"2046","key":"10.1016\/j.ress.2023.109107_bib0070","doi-asserted-by":"crossref","first-page":"1597","DOI":"10.1098\/rspa.2003.1221","article-title":"A study of the characteristics of white noise using the empirical mode decomposition method","volume":"460","author":"Wu","year":"2004","journal-title":"Proc Math Phys Eng Sci"},{"issue":"2","key":"10.1016\/j.ress.2023.109107_bib0071","doi-asserted-by":"crossref","first-page":"224","DOI":"10.7763\/IJMLC.2013.V3.307","article-title":"Addressing the class imbalance problem in medical datasets","volume":"3","author":"Rahman","year":"2013","journal-title":"Int J Mach Learn Comput"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832023000224?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832023000224?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,13]],"date-time":"2023-09-13T03:08:48Z","timestamp":1694574528000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832023000224"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":71,"alternative-id":["S0951832023000224"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2023.109107","relation":{},"ISSN":["0951-8320"],"issn-type":[{"value":"0951-8320","type":"print"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Failure diagnosis of a compressor subjected to surge events: A data-driven framework","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2023.109107","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"109107"}}