{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:27:58Z","timestamp":1740112078111,"version":"3.37.3"},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61972443","62103143"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002767","name":"China Hunan Provincial Science and Technology Department","doi-asserted-by":"publisher","award":["2022WK2006"],"id":[{"id":"10.13039\/501100002767","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002855","name":"Ministry of Science and Technology of the People's Republic of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002855","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2019YFE0105300"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100019091","name":"Key Research and Development Program of Hunan Province of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100019091","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1016\/j.ress.2022.108968","type":"journal-article","created":{"date-parts":[[2022,11,9]],"date-time":"2022-11-09T01:50:03Z","timestamp":1667958603000},"page":"108968","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":16,"special_numbering":"C","title":["A Tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery"],"prefix":"10.1016","volume":"230","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6597-4741","authenticated-orcid":false,"given":"Zhao-Hua","family":"Liu","sequence":"first","affiliation":[]},{"given":"Liang","family":"Chen","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4704-7346","authenticated-orcid":false,"given":"Hua-Liang","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Fa-Ming","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Ya-Nan","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.ress.2022.108968_bib0001","doi-asserted-by":"crossref","first-page":"1997","DOI":"10.1109\/TASE.2021.3069109","article-title":"Fault diagnosis of rotating machinery based on wasserstein distance and feature selection","volume":"19","author":"Ferracuti","year":"2022","journal-title":"IEEE Trans Autom Sci Eng"},{"issue":"108561","key":"10.1016\/j.ress.2022.108968_bib0002","article-title":"A multi-layer spiking neural network-based approach to bearing fault diagnosis","volume":"225","author":"Zuo","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"issue":"18618","key":"10.1016\/j.ress.2022.108968_bib0003","article-title":"Global contextual residual convolutional neural networks for motor fault diagnosis under variable-speed conditions","volume":"225","author":"Xu","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"issue":"1","key":"10.1016\/j.ress.2022.108968_bib0004","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1109\/TSMC.2017.2754287","article-title":"A new deep transfer learning based on sparse auto-encoder for fault diagnosis","volume":"49","author":"Wen","year":"2019","journal-title":"IEEE Trans Syst Man Cybern Syst"},{"issue":"3","key":"10.1016\/j.ress.2022.108968_bib0005","doi-asserted-by":"crossref","first-page":"1591","DOI":"10.1109\/TMECH.2020.3025615","article-title":"A two-stage transfer adversarial network for intelligent fault diagnosis of rotating machinery with multiple new faults","volume":"26","author":"Li","year":"2021","journal-title":"IEEE ASME Trans Mechatron"},{"issue":"3","key":"10.1016\/j.ress.2022.108968_bib0006","doi-asserted-by":"crossref","first-page":"1790","DOI":"10.1109\/TII.2021.3078712","article-title":"Adversarial domain-invariant generalization: a generic domain-regressive framework for bearing fault diagnosis under unseen conditions","volume":"18","author":"Chen","year":"2022","journal-title":"IEEE Trans Ind Inf"},{"issue":"7","key":"10.1016\/j.ress.2022.108968_bib0007","doi-asserted-by":"crossref","first-page":"5516","DOI":"10.1109\/TIE.2018.2868259","article-title":"Three-stage hybrid fault diagnosis for rolling bearings with compressively sampled data and subspace learning techniques","volume":"66","author":"Ahmed","year":"2019","journal-title":"IEEE Trans Ind Electron"},{"key":"10.1016\/j.ress.2022.108968_bib0008","doi-asserted-by":"crossref","first-page":"58838","DOI":"10.1109\/ACCESS.2021.3071796","article-title":"A new deep stacked architecture for multi-fault machinery identification with imbalanced samples","volume":"9","author":"Karamti","year":"2021","journal-title":"IEEE Access"},{"issue":"23","key":"10.1016\/j.ress.2022.108968_bib0009","doi-asserted-by":"crossref","first-page":"14444","DOI":"10.1109\/JSEN.2020.3007262","article-title":"A hybrid temporal feature for gear fault diagnosis using the long short term memory","volume":"20","author":"Abdul","year":"2020","journal-title":"IEEE Sens. J."},{"key":"10.1016\/j.ress.2022.108968_bib0010","doi-asserted-by":"crossref","first-page":"29778","DOI":"10.1109\/ACCESS.2022.3158023","article-title":"Deep ensemble-based classifier for transfer learning in rotating machinery fault diagnosis","volume":"10","author":"Pacheco","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.ress.2022.108968_bib0011","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2020.3041105","article-title":"An intelligent fault diagnosis method based on domain adaptation and its application for bearings under polytropic working conditions","volume":"70","author":"Lei","year":"2021","journal-title":"IEEE Trans Instrum Meas"},{"key":"10.1016\/j.ress.2022.108968_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109359","article-title":"A novel deep multi-source domain adaptation framework for bearing fault diagnosis based on feature-level and task-specific distribution alignment","volume":"178","author":"Rezaeianjouybari","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.ress.2022.108968_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.mechmachtheory.2020.103932","article-title":"Intelligent ball screw fault diagnosis using a deep domain adaptation methodology","volume":"151","author":"Azamfar","year":"2020","journal-title":"Mech Mach Theory"},{"key":"10.1016\/j.ress.2022.108968_bib0014","doi-asserted-by":"crossref","first-page":"940","DOI":"10.1016\/j.promfg.2020.05.133","article-title":"Enhancing intelligent cross-domain fault diagnosis performance on rotating machines with noisy health labels","volume":"48","author":"Ainapure","year":"2020","journal-title":"Procedia Manuf"},{"issue":"3","key":"10.1016\/j.ress.2022.108968_bib0015","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1109\/TAI.2021.3123935","article-title":"Quick learning mechanism with cross-domain adaptation for intelligent fault diagnosis","volume":"3","author":"Sharma","year":"2022","journal-title":"IEEE Trans Artif Intell"},{"issue":"104415","key":"10.1016\/j.ress.2022.108968_bib0016","article-title":"Bearing fault diagnosis with intermediate domain based Layered Maximum Mean Discrepancy: a new transfer learning approach","volume":"105","author":"Schwendemann","year":"2021","journal-title":"Eng Appl Artif Intell"},{"key":"10.1016\/j.ress.2022.108968_bib0017","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1016\/j.neucom.2022.07.074","article-title":"Domain adversarial tangent subspace alignment for explainable domain adaptation","volume":"506","author":"Raab","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ress.2022.108968_bib0018","series-title":"Proc IEEE Conf Comput Vis","first-page":"599","article-title":"When unsupervised domain adaptation meets tensor representations","author":"Lu","year":"2017"},{"key":"10.1016\/j.ress.2022.108968_bib0019","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/j.ymssp.2018.12.012","article-title":"Multidimensional denoising of rotating machine based on tensor factorization","volume":"122","author":"Hu","year":"2019","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2022.108968_bib0020","article-title":"Deep learning with tensor factorization layers for sequential fault diagnosis and industrial process monitoring","volume":"8","author":"Luo","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.ress.2022.108968_bib0021","first-page":"1","article-title":"Kernel flexible and displaceable convex hull based tensor machine for gearbox fault intelligent diagnosis with multi-source signals","volume":"163","author":"He","year":"2020","journal-title":"Measur"},{"key":"10.1016\/j.ress.2022.108968_bib0022","doi-asserted-by":"crossref","first-page":"762","DOI":"10.1016\/j.ymssp.2019.05.016","article-title":"Fault diagnosis method for rolling bearings based on segment tensor rank-(Lr, Lr, 1) decomposition","volume":"132","author":"Zhao","year":"2019","journal-title":"Mech Syst Signal Process"},{"issue":"6","key":"10.1016\/j.ress.2022.108968_bib0023","doi-asserted-by":"crossref","first-page":"1446","DOI":"10.1109\/TCBB.2016.2595583","article-title":"Triangular alignment (TAME): a tensor-based approach for higher-order network alignment","volume":"14","author":"Mohammadi","year":"2017","journal-title":"IEEE\/ACM Trans Comput Biol Bioinform"},{"issue":"1","key":"10.1016\/j.ress.2022.108968_bib0024","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1109\/TGRS.2018.2852066","article-title":"Tensorized principal component alignment: a unified framework for multimodal high-resolution images classification","volume":"57","author":"Gao","year":"2019","journal-title":"IEEE Trans Geosci Remote Sens"},{"issue":"2","key":"10.1016\/j.ress.2022.108968_bib0025","doi-asserted-by":"crossref","first-page":"738","DOI":"10.1109\/TIP.2016.2621664","article-title":"Sparse canonical temporal alignment with deep tensor decomposition for action recognition","volume":"26","author":"Jia","year":"2017","journal-title":"IEEE Trans Image Process"},{"issue":"1","key":"10.1016\/j.ress.2022.108968_bib0026","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1109\/TETCI.2018.2876568","article-title":"Tensor deep learning model for heterogeneous data fusion in Internet of Things","volume":"4","author":"Wang","year":"2020","journal-title":"IEEE Trans Emerg Top Comput Intel."},{"issue":"3","key":"10.1016\/j.ress.2022.108968_bib0027","first-page":"455","article-title":"Tensor decompositions and applications","volume":"51","author":"Kolda","year":"2009","journal-title":"SIAM Rev Soc Ind Appl Math"},{"issue":"7","key":"10.1016\/j.ress.2022.108968_bib0028","doi-asserted-by":"crossref","first-page":"3403","DOI":"10.1109\/TIP.2018.2819503","article-title":"An embarrassingly simple approach to visual domain adaptation","volume":"27","author":"Lu","year":"2018","journal-title":"IEEE Trans Image Process"},{"issue":"4","key":"10.1016\/j.ress.2022.108968_bib0029","doi-asserted-by":"crossref","first-page":"1047","DOI":"10.1109\/TCSS.2020.3001517","article-title":"Enhanced subspace distribution matching for fast visual domain adaptation","volume":"7","author":"Kang","year":"2020","journal-title":"IEEE Trans Comput Soc Syst"},{"key":"10.1016\/j.ress.2022.108968_bib0030","series-title":"Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference","first-page":"137","article-title":"Analysis of representations for domain adaptation","author":"Sch\u00f6lkopf","year":"2007"},{"key":"10.1016\/j.ress.2022.108968_bib0031","doi-asserted-by":"crossref","first-page":"123783","DOI":"10.1109\/ACCESS.2020.3005987","article-title":"Joint transfer of model knowledge and fairness over domains using wasserstein distance","volume":"8","author":"Yoon","year":"2020","journal-title":"IEEE Access"},{"issue":"2","key":"10.1016\/j.ress.2022.108968_bib0032","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/TNN.2010.2091281","article-title":"Domain adaptation via transfer component analysis","volume":"22","author":"Pan","year":"2011","journal-title":"IEEE Trans Neural Netw"},{"issue":"5","key":"10.1016\/j.ress.2022.108968_bib0033","doi-asserted-by":"crossref","first-page":"3137","DOI":"10.1109\/TIE.2016.2519325","article-title":"An intelligent fault diagnosis method using unsupervised feature learning towards mechanical big data","volume":"63","author":"Lei","year":"2016","journal-title":"IEEE Trans Ind Electron"},{"issue":"7","key":"10.1016\/j.ress.2022.108968_bib0034","first-page":"38","article-title":"Distilling the knowledge in a neural network","volume":"14","author":"Hinton","year":"2015","journal-title":"PeerJ Comput Sci"},{"key":"10.1016\/j.ress.2022.108968_bib0035","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1007\/s10107-012-0584-1","article-title":"A feasible method for optimization with orthogonality constraints","volume":"142","author":"Wen","year":"2013","journal-title":"Math Program"},{"key":"10.1016\/j.ress.2022.108968_bib0036","unstructured":"K. Loparo. Case western reserve university bearing data center, (2013), [online]. Available: http:\/\/csegroups.case.edu\/bearingdatacenter\/pages\/12k-drive-end-bearing-fault-data."},{"issue":"330","key":"10.1016\/j.ress.2022.108968_bib0037","article-title":"Feature analysis by k-means clustering for damage assessment in rotating machinery with rolling bearings","volume":"44","author":"Dreher","year":"2022","journal-title":"J Braz Soc Mech Sci Eng"},{"issue":"107060","key":"10.1016\/j.ress.2022.108968_bib0038","article-title":"Deep learning for diagnosis and classification of faults in industrial rotating machinery","volume":"153","author":"Souza","year":"2021","journal-title":"Comput Ind Eng"},{"key":"10.1016\/j.ress.2022.108968_bib0039","first-page":"2058","article-title":"Return of frustratingly easy domain adaptation","author":"Sun","year":"2016","journal-title":"in Proc Amer Assoc Artif Intell Conf"},{"key":"10.1016\/j.ress.2022.108968_bib0040","series-title":"Proc. IEEE Conf. Comput. Vis","first-page":"2200","article-title":"Transfer feature learning with joint distribution adaptation","author":"M","year":"2013"},{"key":"10.1016\/j.ress.2022.108968_bib0041","series-title":"Proc. IEEE Conf Comput Vis","first-page":"2960","article-title":"Unsupervised visual domain adaptation using subspace alignment","author":"Fernando","year":"2013"},{"key":"10.1016\/j.ress.2022.108968_bib0042","series-title":"Proc Int Conf Multimed Expo","first-page":"1210","article-title":"Easy transfer learning by exploiting intra-domain structures","author":"Wang","year":"2019"},{"key":"10.1016\/j.ress.2022.108968_bib0043","series-title":"Proc IEEE Int Conf Pervasive Comput Commun","first-page":"1","article-title":"Stratified transfer learning for cross-domain activity recognition","author":"Wang","year":"2018"},{"issue":"2605","key":"10.1016\/j.ress.2022.108968_bib0044","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"Laurens","year":"2008","journal-title":"J Mach Learn Res"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095183202200583X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S095183202200583X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T21:10:52Z","timestamp":1714252252000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S095183202200583X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":44,"alternative-id":["S095183202200583X"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2022.108968","relation":{},"ISSN":["0951-8320"],"issn-type":[{"type":"print","value":"0951-8320"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A Tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2022.108968","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108968"}}