{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T07:58:43Z","timestamp":1722931123365},"reference-count":42,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["12272300","52075442"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100021171","name":"Basic and Applied Basic Research Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2022A1515011515"],"id":[{"id":"10.13039\/501100021171","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1016\/j.ress.2022.108965","type":"journal-article","created":{"date-parts":[[2022,11,8]],"date-time":"2022-11-08T02:13:07Z","timestamp":1667873587000},"page":"108965","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["An efficient algorithm for analyzing multimode structure system reliability by a new learning function of most reducing average probability of misjudging system state"],"prefix":"10.1016","volume":"230","author":[{"given":"Ting","family":"Yu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5263-5767","authenticated-orcid":false,"given":"Zhenzhou","family":"Lu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7338-7555","authenticated-orcid":false,"given":"Wanying","family":"Yun","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ress.2022.108965_bib0001","series-title":"Structural reliability methods","author":"Ditlevsen","year":"1996"},{"key":"10.1016\/j.ress.2022.108965_bib0002","first-page":"111","article-title":"An exact and invariant first order reliability format","volume":"100","author":"Hasofer","year":"1974","journal-title":"J Eng Mech"},{"issue":"4","key":"10.1016\/j.ress.2022.108965_bib0003","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/0167-4730(87)90002-6","article-title":"New light on first- and second-order reliability methods","volume":"4","author":"Hohenbichler","year":"1987","journal-title":"Struct Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0004","article-title":"Improvement in the computational efficiency of a technique for assessing the reliability of electric power systems based on the Monte Carlo method","volume":"204","author":"Dmitry","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"issue":"2","key":"10.1016\/j.ress.2022.108965_bib0005","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/S0167-4730(99)00014-4","article-title":"A new adaptive important sampling scheme","volume":"21","author":"Au","year":"1999","journal-title":"Struct Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0006","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108287","article-title":"Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis","volume":"220","author":"Wang","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0007","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/S0266-8920(01)00019-4","article-title":"Estimation of small failure probabilities in high dimensions by subset simulation","volume":"16","author":"Au","year":"2001","journal-title":"Probab Eng Mech"},{"key":"10.1016\/j.ress.2022.108965_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108607","article-title":"An adaptive subset simulation algorithm for system reliability analysis with discontinuous limit states","volume":"225","author":"Chan","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"issue":"4","key":"10.1016\/j.ress.2022.108965_bib0009","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/j.probengmech.2004.05.004","article-title":"A critical appraisal of reliability estimation procedures for high dimensions","volume":"19","author":"Schueller","year":"2004","journal-title":"Probab Eng Mech"},{"key":"10.1016\/j.ress.2022.108965_bib0010","doi-asserted-by":"crossref","first-page":"895","DOI":"10.1016\/j.apm.2019.11.009","article-title":"Augmented line sampling for approximation of failure probability function in reliability-based analysis","volume":"80","author":"Yuan","year":"2020","journal-title":"Appl Math Model"},{"key":"10.1016\/j.ress.2022.108965_bib0011","doi-asserted-by":"crossref","unstructured":"Wang C., Qiang X., Xu M., et\u00a0al. Recent advances in surrogate modeling methods for uncertainty quantification and propagation. Symmetry (Basel) 2022,14(6): 1219.","DOI":"10.3390\/sym14061219"},{"key":"10.1016\/j.ress.2022.108965_bib0012","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107804","article-title":"An asymptotic stochastic response surface approach to reliability assessment under multi-source heterogeneous uncertainties","volume":"215","author":"He","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107666","article-title":"Reliability-based design optimization of a spar-type floating offshore wind turbine support structure","volume":"213","author":"Leimeister","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"issue":"1","key":"10.1016\/j.ress.2022.108965_bib0014","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.strusafe.2004.03.004","article-title":"Structural reliability analysis for implicit performance functions using artificial neural network","volume":"21","author":"Deng","year":"2005","journal-title":"Struct Saf"},{"issue":"4","key":"10.1016\/j.ress.2022.108965_bib0015","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1016\/j.ress.2009.11.009","article-title":"Comparison of bootstrapped artificial neural networks and quadratic response surfaces for the estimation of the functional failure probability of a thermalhydraulic passive system","volume":"95","author":"Pedroni","year":"2010","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0016","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108162","article-title":"An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error","volume":"218","author":"Liu","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"issue":"10","key":"10.1016\/j.ress.2022.108965_bib0017","doi-asserted-by":"crossref","first-page":"1295","DOI":"10.1007\/s10483-006-1001-z","article-title":"Support vector machine for structural reliability analysis","volume":"27","author":"Li","year":"2006","journal-title":"Appl Math Mech"},{"issue":"11","key":"10.1016\/j.ress.2022.108965_bib0018","doi-asserted-by":"crossref","first-page":"991","DOI":"10.1111\/mice.12480","article-title":"Probability and interval hybrid reliability analysis based on adaptive local approximation projection outlines using support vector machine","volume":"34","author":"Zhang","year":"2019","journal-title":"Comput-Aided Civ Infrastruct Eng"},{"issue":"2","key":"10.1016\/j.ress.2022.108965_bib0019","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1007\/s00158-012-0857-6","article-title":"Adaptive virtual support vector machine for reliability analysis of high-dimensional problems","volume":"47","author":"Song","year":"2013","journal-title":"Struct Multidiscip Optim"},{"key":"10.1016\/j.ress.2022.108965_bib0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108635","article-title":"Adaptive learning for reliability analysis using Support Vector Machines","volume":"226","author":"Pepper","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0021","first-page":"17","article-title":"Sparse polynomial chaos expansion based on D-MORPH regression","volume":"323","author":"Cheng","year":"2018","journal-title":"Appl Math Comput"},{"issue":"4","key":"10.1016\/j.ress.2022.108965_bib0022","doi-asserted-by":"crossref","first-page":"3159","DOI":"10.1002\/nme.6351","article-title":"Active learning polynomial chaos expansion for reliability analysis by maximizing expected indicator function prediction","volume":"121","author":"Cheng","year":"2020","journal-title":"Int J Numer Methods Eng"},{"key":"10.1016\/j.ress.2022.108965_bib0023","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107795","article-title":"Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs","volume":"214","author":"Mara","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0024","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107953","article-title":"An efficient and robust Kriging-based method for system reliability analysis","volume":"216","author":"Wang","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0025","article-title":"An efficient multi-fidelity kriging surrogate model-based method for global sensitivity analysis","author":"Shang","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0026","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108771","article-title":"Adaptive Kriging-based failure probability estimation for multiple responses","volume":"228","author":"Ma","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0028","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.106975","article-title":"An efficient method based on AK-MCS for estimating failure probability function","volume":"201","author":"Ling","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0029","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.107084","article-title":"Extension of AK-MCS for the efficient computation of very small failure probabilities","volume":"203","author":"Razaaly","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107693","article-title":"A fast-convergence algorithm for reliability analysis based on the AK-MCS","volume":"213","author":"Xiong","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0031","doi-asserted-by":"crossref","DOI":"10.1016\/j.probengmech.2022.103351","article-title":"Reliability analysis of underground tunnel by a novel adaptive Kriging based metamodeling approach","volume":"70","author":"Thapa","year":"2022","journal-title":"Probab Eng Mech"},{"issue":"2","key":"10.1016\/j.ress.2022.108965_bib0032","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.strusafe.2011.01.002","article-title":"AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation","volume":"33","author":"Echard","year":"2011","journal-title":"Struct Saf"},{"issue":"10","key":"10.1016\/j.ress.2022.108965_bib0033","doi-asserted-by":"crossref","first-page":"2459","DOI":"10.2514\/1.34321","article-title":"Efficient global reliability analysis for nonlinear implicit performance functions","volume":"46","author":"Bichon","year":"2008","journal-title":"AIAA J"},{"issue":"5","key":"10.1016\/j.ress.2022.108965_bib0034","doi-asserted-by":"crossref","first-page":"1182","DOI":"10.1016\/j.camwa.2015.07.004","article-title":"A new learning function for Kriging and its applications to solve reliability problems in engineering","volume":"70","author":"Lv","year":"2015","journal-title":"Comput Math Appl"},{"key":"10.1016\/j.ress.2022.108965_bib0035","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.ress.2016.09.003","article-title":"LIF: a new Kriging based learning function and its application to structural reliability analysis","volume":"157","author":"Sun","year":"2017","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0038","doi-asserted-by":"crossref","first-page":"573","DOI":"10.1016\/j.apm.2017.03.053","article-title":"Novel reliability-based optimization method for thermal structure with hybrid random, interval and fuzzy parameters","volume":"47","author":"Wang","year":"2017","journal-title":"Appl Math Model"},{"key":"10.1016\/j.ress.2022.108965_bib0037","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.ress.2013.10.010","article-title":"An adaptation of the AK-MCS method for system reliability","volume":"123","author":"Fauriat","year":"2014","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0039","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1007\/s00158-018-2067-3","article-title":"AK-SYSi: an improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function","volume":"59","author":"Yun","year":"2019","journal-title":"Struct Multidiscip Optim"},{"key":"10.1016\/j.ress.2022.108965_bib0036","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.106857","article-title":"A novel learning function based on Kriging for reliability analysis","volume":"198","author":"Shi","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0040","article-title":"Expected system improvement (ESI): a new learning function for system reliability analysis","volume":"222","author":"Seonghyeok","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0041","first-page":"0951","article-title":"Quasi-Monte Carlo based uncertainty analysis: sampling efficiency and error estimation in engineering applications","author":"Hou","year":"2019","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108965_bib0042","first-page":"0018","article-title":"A single-loop approach for time-variant reliability-based design optimization","author":"Huang","year":"2017","journal-title":"IEEE Trans Reliab"},{"key":"10.1016\/j.ress.2022.108965_bib0027","series-title":"Aspects of the matlab toolbox dace","author":"Lophaven","year":"2002"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022005804?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022005804?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T21:10:38Z","timestamp":1714252238000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832022005804"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":42,"alternative-id":["S0951832022005804"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2022.108965","relation":{},"ISSN":["0951-8320"],"issn-type":[{"value":"0951-8320","type":"print"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An efficient algorithm for analyzing multimode structure system reliability by a new learning function of most reducing average probability of misjudging system state","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2022.108965","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108965"}}