{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:48:23Z","timestamp":1732042103839},"reference-count":69,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1016\/j.ress.2022.108963","type":"journal-article","created":{"date-parts":[[2022,11,8]],"date-time":"2022-11-08T07:17:30Z","timestamp":1667891850000},"page":"108963","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process"],"prefix":"10.1016","volume":"230","author":[{"given":"Dawei","family":"Gao","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9256-2427","authenticated-orcid":false,"given":"Yongsheng","family":"Zhu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8570-4263","authenticated-orcid":false,"given":"C.","family":"Guedes Soares","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ress.2022.108963_bib0001","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107677","article-title":"A two-stage black-spot identification model for inland waterway transportation","volume":"213","author":"Zhang","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0002","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108919","article-title":"An interpretable knowledge-based decision support method for ship collision avoidance using AIS data","volume":"230","author":"Zhang","year":"2023","journal-title":"Reliability Engineering and System Safety"},{"issue":"6","key":"10.1016\/j.ress.2022.108963_bib0003","doi-asserted-by":"crossref","first-page":"879","DOI":"10.1017\/S0373463313000519","article-title":"Use of AIS data to characterise marine traffic patterns and ship collision risk off the coast of Portugal","volume":"66","author":"Silveira","year":"2013","journal-title":"J Navig"},{"issue":"10","key":"10.1016\/j.ress.2022.108963_bib0004","doi-asserted-by":"crossref","first-page":"1936","DOI":"10.1111\/risa.12757","article-title":"An evidential reasoning-based CREAM to human reliability analysis in maritime accident process","volume":"37","author":"Wu","year":"2017","journal-title":"Risk Anal"},{"issue":"9","key":"10.1016\/j.ress.2022.108963_bib0005","doi-asserted-by":"crossref","first-page":"1560","DOI":"10.1111\/risa.13662","article-title":"Quantitative analysis on risk influencing factors in the Jiangsu segment of the Yangtze river","volume":"41","author":"Zhang","year":"2021","journal-title":"Risk Anal"},{"key":"10.1016\/j.ress.2022.108963_bib0006","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107674","article-title":"A big data analytics method for the evaluation of ship-ship collision risk reflecting hydrometeorological conditions","volume":"213","author":"Zhang","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0007","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107789","article-title":"A multicriteria outranking approach for ship collision risk assessment","volume":"214","author":"Silveira","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108249","article-title":"Review of techniques and challenges of human and organizational factors analysis in maritime transportation","volume":"219","author":"Wu","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0009","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2021.110143","article-title":"Conflict detection method based on dynamic ship domain model for visualization of collision risk Hot-Spots","volume":"242","author":"Liu","year":"2021","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108963_bib0010","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.107070","article-title":"Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network","volume":"203","author":"Fan","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0011","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1016\/j.oceaneng.2015.08.016","article-title":"Collision risk detection and quantification in ship navigation with integrated bridge systems","volume":"109","author":"Perera","year":"2015","journal-title":"Ocean Eng"},{"issue":"6","key":"10.1016\/j.ress.2022.108963_bib0012","doi-asserted-by":"crossref","first-page":"5655","DOI":"10.1109\/TITS.2021.3055614","article-title":"GeoTrackNet-A maritime anomaly detector using probabilistic neural network representation of AIS tracks and a contrario detection","volume":"23","author":"Nguyen","year":"2022","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108963_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107463","article-title":"Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics","volume":"209","author":"Rong","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0014","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"11106","article-title":"Informer: beyond efficient transformer for long sequence time-series forecasting","volume":"35","author":"Zhou","year":"2021"},{"key":"10.1016\/j.ress.2022.108963_bib0015","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.isatra.2021.05.026","article-title":"Causal augmented ConvNet: a temporal memory dilated convolution model for long-sequence time series prediction","volume":"123","author":"Ayodeji","year":"2022","journal-title":"ISA Trans"},{"key":"10.1016\/j.ress.2022.108963_bib0016","first-page":"1","article-title":"Video-based detection infrastructure enhancement for automated ship recognition and behavior analysis","volume":"2020","author":"Chen","year":"2020","journal-title":"J Adv Transp"},{"key":"10.1016\/j.ress.2022.108963_bib0017","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2020.107774","article-title":"Impacts of wind and current on ship behavior in ports and waterways: a quantitative analysis based on AIS data","volume":"213","author":"Zhou","year":"2020","journal-title":"Ocean Eng"},{"issue":"5","key":"10.1016\/j.ress.2022.108963_bib0018","doi-asserted-by":"crossref","first-page":"1014","DOI":"10.1017\/S0373463320000144","article-title":"Detection of abnormal vessel behaviour based on probabilistic directed graph model","volume":"73","author":"Tang","year":"2020","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108963_bib0019","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2020.106936","article-title":"Data mining approach to shipping route characterization and anomaly detection based on AIS data","volume":"198","author":"Rong","year":"2020","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108963_bib0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107789","article-title":"A multicriteria outranking approach for ship collision risk assessment","volume":"214","author":"Silveira","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0021","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2019.106130","article-title":"Probabilistic ship domain with applications to ship collision risk assessment","volume":"186","author":"Zhang","year":"2019","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108963_bib0022","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.107127","article-title":"Towards a convolutional neural network model for classifying regional ship collision risk levels for waterway risk analysis","volume":"204","author":"Zhang","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0023","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107993","article-title":"An integrated dynamic ship risk model based on Bayesian networks and evidential reasoning","volume":"216","author":"Yu","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0024","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107819","article-title":"An AIS-based deep learning framework for regional ship behavior prediction","volume":"215","author":"Murray","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"issue":"1","key":"10.1016\/j.ress.2022.108963_bib0025","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1017\/S037346330999021X","article-title":"Decision support from genetic algorithms for ship collision avoidance route planning and alerts","volume":"63","author":"Tsou","year":"2010","journal-title":"J Navig"},{"issue":"4","key":"10.1016\/j.ress.2022.108963_bib0026","doi-asserted-by":"crossref","DOI":"10.1115\/1.4049118","article-title":"Motion planning, guidance and control system for autonomous surface vessel","volume":"143","author":"Hinostroza","year":"2021","journal-title":"J Offshore Mech Arct Eng"},{"issue":"2","key":"10.1016\/j.ress.2022.108963_bib0027","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1109\/MITS.2021.3049404","article-title":"Vehicle trajectory prediction using LSTMs with spatial-temporal attention mechanisms","volume":"14","author":"Lin","year":"2021","journal-title":"IEEE Intell Transp Syst Mag"},{"key":"10.1016\/j.ress.2022.108963_bib0028","doi-asserted-by":"crossref","first-page":"3229","DOI":"10.1109\/TIP.2021.3058599","article-title":"Holistic LSTM for pedestrian trajectory prediction","volume":"30","author":"Quan","year":"2021","journal-title":"IEEE Trans Image Process"},{"issue":"18","key":"10.1016\/j.ress.2022.108963_bib0029","doi-asserted-by":"crossref","first-page":"5133","DOI":"10.3390\/s20185133","article-title":"A ship trajectory prediction framework based on a recurrent neural network","volume":"20","author":"Suo","year":"2020","journal-title":"Sensors"},{"key":"10.1016\/j.ress.2022.108963_bib0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.physa.2021.126470","article-title":"High-fidelity data supported ship trajectory prediction via an ensemble machine learning framework","volume":"586","author":"Zhao","year":"2022","journal-title":"Phys A"},{"issue":"6","key":"10.1016\/j.ress.2022.108963_bib0031","doi-asserted-by":"crossref","first-page":"1359","DOI":"10.1017\/S0373463319000316","article-title":"Inland ship trajectory restoration by recurrent neural network","volume":"72","author":"Zhong","year":"2019","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108963_bib0032","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"12085","article-title":"SR-LSTM: state refinement for LSTM towards pedestrian trajectory prediction","author":"Zhang","year":"2019"},{"key":"10.1016\/j.ress.2022.108963_bib0033","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"507","article-title":"Spatio-temporal graph transformer networks for pedestrian trajectory prediction","author":"Yu","year":"2020"},{"key":"10.1016\/j.ress.2022.108963_bib0034","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1007\/s12530-015-9133-5","article-title":"Real-time vessel behavior prediction","volume":"7","author":"Zissis","year":"2016","journal-title":"Evol Syst"},{"key":"10.1016\/j.ress.2022.108963_bib0035","series-title":"Proceedings of the UKACC International Conference on Control","first-page":"1","article-title":"Ship trajectory prediction for intelligent traffic management using clustering and ANN","author":"Gan","year":"2016"},{"issue":"6","key":"10.1016\/j.ress.2022.108963_bib0036","doi-asserted-by":"crossref","first-page":"4329","DOI":"10.1109\/TAES.2021.3096873","article-title":"Deep learning methods for vessel trajectory prediction based on recurrent neural networks","volume":"57","author":"Capobianco","year":"2021","journal-title":"IEEE Trans Aerosp Electron Syst"},{"key":"10.1016\/j.ress.2022.108963_bib0037","series-title":"Proceedings of the ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","article-title":"Prediction oof vessel trajectories from AIS data via sequence-to-sequence recurrent neural networks","author":"Forti","year":"2020"},{"key":"10.1016\/j.ress.2022.108963_bib0038","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2020.107478","article-title":"A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data","volume":"209","author":"Murray","year":"2020","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108963_bib0039","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2021.108956","article-title":"A novel MP-LSTM method for ship trajectory prediction based on AIS data","volume":"228","author":"Gao","year":"2021","journal-title":"Ocean Eng"},{"issue":"1","key":"10.1016\/j.ress.2022.108963_bib0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.jece.2020.104599","article-title":"River water quality index prediction and uncertainty analysis: a comparative study of machine learning models","volume":"9","author":"Asadollah","year":"2021","journal-title":"J Environ Chem Eng"},{"key":"10.1016\/j.ress.2022.108963_bib0041","series-title":"Adv-BNN: improved adversarial defense through robust Bayesian neural network","author":"Liu","year":"2018"},{"key":"10.1016\/j.ress.2022.108963_bib0042","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2021.112408","article-title":"Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach","volume":"259","author":"Ma","year":"2021","journal-title":"Remote Sens Environ"},{"key":"10.1016\/j.ress.2022.108963_bib0043","series-title":"SDE-Net: equipping deep neural networks with uncertainty estimates","author":"Kong","year":"2020"},{"key":"10.1016\/j.ress.2022.108963_bib0044","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108061","article-title":"Maritime traffic probabilistic prediction based on ship motion pattern extraction","volume":"217","author":"Rong","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0045","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.jpowsour.2017.05.004","article-title":"Gaussian process regression for forecasting battery state of health","volume":"357","author":"Richardson","year":"2017","journal-title":"J Power Sources"},{"issue":"4","key":"10.1016\/j.ress.2022.108963_bib0046","doi-asserted-by":"crossref","first-page":"1225","DOI":"10.1109\/TTE.2019.2944802","article-title":"Modified gaussian process regression models for cyclic capacity prediction of lithium-ion batteries","volume":"5","author":"Liu","year":"2019","journal-title":"IEEE Trans Transp Electrif"},{"key":"10.1016\/j.ress.2022.108963_bib0047","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2019.116467","article-title":"State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression","volume":"190","author":"Li","year":"2020","journal-title":"Energy"},{"issue":"10","key":"10.1016\/j.ress.2022.108963_bib0048","doi-asserted-by":"crossref","first-page":"8255","DOI":"10.1007\/s13369-020-04683-4","article-title":"Gaussian process regression technique to estimate the pile bearing capacity","volume":"45","author":"Momeni","year":"2020","journal-title":"Arab J Sci Eng"},{"key":"10.1016\/j.ress.2022.108963_bib0049","doi-asserted-by":"crossref","first-page":"556","DOI":"10.1016\/j.ymssp.2017.11.021","article-title":"Gaussian process regression for tool wear prediction","volume":"104","author":"Kong","year":"2018","journal-title":"Mech Syst Signal Process"},{"issue":"6","key":"10.1016\/j.ress.2022.108963_bib0050","doi-asserted-by":"crossref","first-page":"2736","DOI":"10.1109\/TCST.2019.2949757","article-title":"Cautious model predictive control using Gaussian process regression","volume":"28","author":"Hewing","year":"2020","journal-title":"IEEE Trans Control Syst Technol"},{"issue":"15","key":"10.1016\/j.ress.2022.108963_bib0051","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1016\/j.oceaneng.2019.04.024","article-title":"Ship trajectory uncertainty prediction based on a Gaussian process model","volume":"182","author":"Rong","year":"2019","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108963_bib0052","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.apor.2019.05.020","article-title":"A novel framework for regional collision risk identification based on AIS data","volume":"89","author":"Liu","year":"2019","journal-title":"Appl Ocean Res"},{"issue":"3","key":"10.1016\/j.ress.2022.108963_bib0053","doi-asserted-by":"crossref","first-page":"224","DOI":"10.3390\/jmse8030224","article-title":"A novel framework of real-time regional collision risk prediction based on the RNN approach","volume":"8","author":"Liu","year":"2020","journal-title":"J Mar Sci Eng"},{"key":"10.1016\/j.ress.2022.108963_bib0054","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107901","article-title":"Collision risk analysis on ferry ships in Jiangsu section of the Yangtze river based on AIS data","volume":"215","author":"Cai","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0055","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.oceaneng.2018.03.073","article-title":"Towards a decision support system for maritime navigation on heavily trafficked basins","volume":"159","author":"O\u017coga","year":"2018","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108963_bib0056","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107766","article-title":"A ship domain-based model of collision risk for near-miss detection and Collision Alert systems","volume":"214","author":"Szlapczynski","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0057","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107752","article-title":"An empirical ship domain based on evasive maneuver and perceived collision risk","volume":"213","author":"Du","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0058","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.ssci.2015.03.015","article-title":"A risk-informed ship collision alert system: framework and application","volume":"77","author":"Goerlandt","year":"2015","journal-title":"Saf Sci"},{"key":"10.1016\/j.ress.2022.108963_bib0059","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108145","article-title":"Accident susceptibility index for a passenger ship-a framework and case study","volume":"218","author":"Montewka","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0060","series-title":"Developments in the Collision and Grounding of Ships and Offshore Structures","article-title":"Collision probability assessment based on uncertainty prediction of ship trajectories","author":"Rong","year":"2019"},{"issue":"5","key":"10.1016\/j.ress.2022.108963_bib0061","doi-asserted-by":"crossref","first-page":"573","DOI":"10.1016\/j.ress.2010.01.009","article-title":"Probability modelling of vessel collisions","volume":"95","author":"Montewka","year":"2010","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0062","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108666","article-title":"A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships","volume":"226","author":"Ruponen","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0063","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107772","article-title":"A probabilistic risk approach for the collision detection of multi-ships under spatiotemporal movement uncertainty","volume":"215","author":"Xin","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108963_bib0064","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1016\/j.neucom.2018.06.077","article-title":"A survey on Laplacian eigenmaps based manifold learning methods","volume":"335","author":"Li","year":"2019","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.ress.2022.108963_bib0065","doi-asserted-by":"crossref","first-page":"808","DOI":"10.1007\/s11036-019-01353-0","article-title":"A survey on the development of self-organizing maps for unsupervised intrusion detection","volume":"26","author":"Qu","year":"2021","journal-title":"Mob Netw Appl"},{"key":"10.1016\/j.ress.2022.108963_bib0066","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/978-3-540-74048-3_4","article-title":"Dynamic time warping","author":"M\u00fcller","year":"2007","journal-title":"Inf Retr Music Motion"},{"issue":"1","key":"10.1016\/j.ress.2022.108963_bib0067","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/TSMC.1979.4310076","article-title":"A threshold selection method from gray-level histograms","volume":"9","author":"Otsu","year":"1979","journal-title":"IEEE Trans Syst Man Cybern"},{"issue":"2","key":"10.1016\/j.ress.2022.108963_bib0068","doi-asserted-by":"crossref","first-page":"1004","DOI":"10.1109\/TAES.2018.2867698","article-title":"Multiple model method for aircraft conflict detection and resolution in intent and weather uncertainty","volume":"55","author":"Jilkov","year":"2018","journal-title":"IEEE Trans Aerosp Electron Syst"},{"key":"10.1016\/j.ress.2022.108963_bib0069","series-title":"Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit","first-page":"4876","article-title":"A real-time Monte Carlo implementation for computing probability of conflict","author":"Yang","year":"2004"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022005786?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022005786?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T19:34:08Z","timestamp":1678563248000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832022005786"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":69,"alternative-id":["S0951832022005786"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2022.108963","relation":{},"ISSN":["0951-8320"],"issn-type":[{"value":"0951-8320","type":"print"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2022.108963","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"108963"}}