{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:27:58Z","timestamp":1740112078760,"version":"3.37.3"},"reference-count":94,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["52031009"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"publisher","award":["202006950039"],"id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010663","name":"European Research Council","doi-asserted-by":"publisher","award":["TRUST CoG 2019 864724"],"id":[{"id":"10.13039\/100010663","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000781","name":"European Research Council","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000781","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1016\/j.ress.2022.108936","type":"journal-article","created":{"date-parts":[[2022,10,26]],"date-time":"2022-10-26T16:19:57Z","timestamp":1666801197000},"page":"108936","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":26,"special_numbering":"C","title":["Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters"],"prefix":"10.1016","volume":"230","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-2362-0806","authenticated-orcid":false,"given":"Xuri","family":"Xin","sequence":"first","affiliation":[]},{"given":"Kezhong","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0217-5739","authenticated-orcid":false,"given":"Sean","family":"Loughney","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4646-9106","authenticated-orcid":false,"given":"Jin","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1385-493X","authenticated-orcid":false,"given":"Zaili","family":"Yang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ress.2022.108936_bib0001","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1109\/TITS.2019.2955048","article-title":"A Direction-Constrained Space-Time Prism-Based Approach for Quantifying Possible Multi-Ship Collision Risks","volume":"22","author":"Yu","year":"2019","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0002","doi-asserted-by":"crossref","first-page":"534","DOI":"10.1109\/TITS.2018.2816122","article-title":"Automatic identification system-based approach for assessing the near-miss collision risk dynamics of ships in ports","volume":"20","author":"Fang","year":"2018","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0003","article-title":"Multi-stage and multi-topology analysis of ship traffic complexity for probabilistic collision detection","author":"Xin","year":"2022","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.ress.2022.108936_bib0004","first-page":"1","article-title":"Filtering based multi-sensor data fusion algorithm for a reliable unmanned surface vehicle navigation","author":"Liu","year":"2022","journal-title":"J Mar Eng Technol"},{"key":"10.1016\/j.ress.2022.108936_bib0005","article-title":"Deep Network-Enabled Haze Visibility Enhancement for Visual IoT-Driven Intelligent Transportation Systems","author":"Liu","year":"2022","journal-title":"IEEE Trans Ind Informatics"},{"key":"10.1016\/j.ress.2022.108936_bib0006","article-title":"Intelligent Edge-Enabled Efficient Multi-Source Data Fusion for Autonomous Surface Vehicles in Maritime Internet of Things","author":"Liu","year":"2022","journal-title":"IEEE Trans Green Commun Netw"},{"key":"10.1016\/j.ress.2022.108936_bib0007","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.107310","article-title":"Spatial patterns and characteristics of global maritime accidents","volume":"206","author":"Zhang","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108145","article-title":"Accident susceptibility index for a passenger ship-a framework and case study","volume":"218","author":"Montewka","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0009","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107993","article-title":"An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning","volume":"216","author":"Yu","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0010","article-title":"Analytics Method for Maritime Traffic Flow Complexity Estimation in Inland Waterways","author":"Zhang","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0011","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108697","article-title":"A machine learning method for the evaluation of ship grounding risk in real operational conditions","author":"Zhang","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0012","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.ress.2018.03.033","article-title":"Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports","volume":"176","author":"Bye","year":"2018","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0013","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.apor.2019.05.020","article-title":"A novel framework for regional collision risk identification based on AIS data","volume":"89","author":"Liu","year":"2019","journal-title":"Appl Ocean Res"},{"key":"10.1016\/j.ress.2022.108936_bib0014","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1016\/j.oceaneng.2017.09.015","article-title":"A novel analytic framework of real-time multi-vessel collision risk assessment for maritime traffic surveillance","volume":"145","author":"Zhen","year":"2017","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0015","first-page":"1","article-title":"A novel regional collision risk assessment method considering aggregation density under multi-ship encounter situations","author":"Zhen","year":"2021","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108936_bib0016","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.ssci.2019.04.014","article-title":"Probabilistic risk analysis for ship-ship collision: state-of-the-art","volume":"117","author":"Chen","year":"2019","journal-title":"Saf Sci"},{"key":"10.1016\/j.ress.2022.108936_bib0017","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.106933","article-title":"Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data","author":"Du","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0018","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1016\/j.ssci.2019.09.018","article-title":"Ship collision avoidance methods: State-of-the-art","volume":"121","author":"Huang","year":"2020","journal-title":"Saf Sci"},{"key":"10.1016\/j.ress.2022.108936_bib0019","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1007\/s10115-019-01355-0","article-title":"Mining maritime traffic conflict trajectories from a massive AIS data","volume":"62","author":"Lei","year":"2020","journal-title":"Knowl Inf Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0020","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.oceaneng.2015.07.046","article-title":"A method for detecting possible near miss ship collisions from AIS data","volume":"107","author":"Zhang","year":"2015","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0021","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.oceaneng.2017.09.020","article-title":"Review of ship safety domains: Models and applications","volume":"145C","author":"Szlapczynski","year":"2017","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0022","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2019.106130","article-title":"Probabilistic ship domain with applications to ship collision risk assessment","volume":"186","author":"Zhang","year":"2019","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0023","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2021.110143","article-title":"Conflict detection method based on dynamic ship domain model for visualization of collision risk Hot-Spots","volume":"242","author":"Liu","year":"2021","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0024","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1017\/S0373463315000764","article-title":"Dynamic Ship Domain Models for Capacity Analysis of Restricted Water Channels","volume":"69","author":"Liu","year":"2016","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108936_bib0025","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1017\/S0373463311000683","article-title":"Vessel Collision Frequency Estimation in the Singapore Strait","volume":"65","author":"Weng","year":"2012","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108936_bib0026","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107674","article-title":"A big data analytics method for the evaluation of ship-ship collision risk reflecting hydrometeorological conditions","volume":"213","author":"Zhang","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0027","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.neucom.2015.12.028","article-title":"A real-time collision avoidance learning system for Unmanned Surface Vessels","volume":"182","author":"Zhao","year":"2016","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ress.2022.108936_bib0028","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107806","article-title":"A concept of critical safety area applicable for an obstacle-avoidance process for manned and autonomous ships","volume":"214","author":"Gil","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0029","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2020.107709","article-title":"Determination of the dynamic critical maneuvering area in an encounter between two vessels: Operation with negligible environmental disruption","volume":"213","author":"Gil","year":"2020","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0030","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.oceaneng.2013.09.016","article-title":"An approach of vessel collision risk assessment based on the D\u2013S evidence theory","volume":"74","author":"Li","year":"2013","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0031","doi-asserted-by":"crossref","DOI":"10.1177\/1687814016671250","article-title":"Estimation of vessel collision risk index based on support vector machine","volume":"8","author":"Gang","year":"2016","journal-title":"Adv Mech Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0032","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.ssci.2015.03.015","article-title":"A risk-informed ship collision alert system: framework and application","volume":"77","author":"Goerlandt","year":"2015","journal-title":"Saf Sci"},{"key":"10.1016\/j.ress.2022.108936_bib0033","doi-asserted-by":"crossref","first-page":"698","DOI":"10.1016\/j.trc.2018.08.010","article-title":"Probabilistic multi-aircraft conflict detection approach for trajectory-based operation","volume":"95","author":"Hao","year":"2018","journal-title":"Transp Res Part C Emerg Technol"},{"key":"10.1016\/j.ress.2022.108936_bib0034","doi-asserted-by":"crossref","DOI":"10.1016\/j.trc.2020.102736","article-title":"Collision probability between intruding drone and commercial aircraft in airport restricted area based on collision-course trajectory planning","volume":"120","author":"Zhang","year":"2020","journal-title":"Transp Res Part C Emerg Technol"},{"key":"10.1016\/j.ress.2022.108936_bib0035","doi-asserted-by":"crossref","first-page":"1899","DOI":"10.1109\/TITS.2020.3029279","article-title":"Efficient COLREG-compliant collision avoidance in multi-ship encounter situations","volume":"23","author":"Cho","year":"2020","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0036","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2022.111666","article-title":"Multi-ship collision avoidance decision-making and coordination mechanism in Mixed Navigation Scenarios","volume":"257","author":"Liu","year":"2022","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0037","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2020.106936","article-title":"Data mining approach to shipping route characterization and anomaly detection based on AIS data","volume":"198","author":"Rong","year":"2020","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0038","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1016\/j.oceaneng.2019.04.024","article-title":"Ship trajectory uncertainty prediction based on a Gaussian Process model","volume":"182","author":"Rong","year":"2019","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0039","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.tre.2017.07.011","article-title":"Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters","volume":"129","author":"Zhang","year":"2019","journal-title":"Transp Res Part E Logist Transp Rev"},{"key":"10.1016\/j.ress.2022.108936_bib0040","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107463","article-title":"Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics","volume":"209","author":"Rong","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0041","doi-asserted-by":"crossref","DOI":"10.1016\/j.trc.2022.103856","article-title":"Unsupervised hierarchical methodology of maritime traffic pattern extraction for knowledge discovery","volume":"143","author":"Li","year":"2022","journal-title":"Transp Res Part C Emerg Technol"},{"key":"10.1016\/j.ress.2022.108936_bib0042","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.ins.2020.04.009","article-title":"Adaptively constrained dynamic time warping for time series classification and clustering","volume":"534","author":"Li","year":"2020","journal-title":"Inf Sci (Ny)"},{"key":"10.1016\/j.ress.2022.108936_bib0043","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2021.108803","article-title":"An unsupervised learning method with convolutional auto-encoder for vessel trajectory similarity computation","volume":"225","author":"Liang","year":"2021","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0044","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108311","article-title":"Know your safety indicator\u2013A determination of merchant vessels Bow Crossing Range based on big data analytics","volume":"220","author":"Gil","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0045","doi-asserted-by":"crossref","first-page":"5765","DOI":"10.1109\/TITS.2021.3057907","article-title":"Ship Path Optimization That Accounts for Geographical Traffic Characteristics to Increase Maritime Port Safety","volume":"23","author":"Yu","year":"2021","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0046","article-title":"AIS in maritime research","volume":"106","author":"Svanberg","year":"2019","journal-title":"Policy"},{"key":"10.1016\/j.ress.2022.108936_bib0047","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1080\/01441647.2019.1649315","article-title":"How big data enriches maritime research\u2013a critical review of automatic identification system (AIS) data applications","volume":"39","author":"Yang","year":"2019","journal-title":"Transp Rev"},{"key":"10.1016\/j.ress.2022.108936_bib0048","doi-asserted-by":"crossref","first-page":"1796","DOI":"10.1109\/TITS.2019.2908191","article-title":"Traffic pattern mining and forecasting technologies in maritime traffic service networks: A comprehensive survey","volume":"21","author":"Xiao","year":"2019","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0049","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108061","article-title":"Maritime traffic probabilistic prediction based on ship motion pattern extraction","volume":"217","author":"Rong","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0050","doi-asserted-by":"crossref","first-page":"722","DOI":"10.1109\/TITS.2017.2699635","article-title":"Maritime traffic networks: From historical positioning data to unsupervised maritime traffic monitoring","volume":"19","author":"Arguedas","year":"2017","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0051","doi-asserted-by":"crossref","DOI":"10.1016\/j.apor.2020.102271","article-title":"Exploring AIS data for intelligent maritime routes extraction","volume":"101","author":"Yan","year":"2020","journal-title":"Appl Ocean Res"},{"key":"10.1016\/j.ress.2022.108936_bib0052","first-page":"1","article-title":"Automatic generation of geographical networks for maritime traffic surveillance. 17th Int","author":"Arguedas","year":"2014","journal-title":"Conf. Inf. fusion"},{"key":"10.1016\/j.ress.2022.108936_bib0053","doi-asserted-by":"crossref","first-page":"2218","DOI":"10.3390\/e15062218","article-title":"Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction","volume":"15","author":"Pallotta","year":"2013","journal-title":"Entropy"},{"key":"10.1016\/j.ress.2022.108936_bib0054","first-page":"45","article-title":"AIS data visualization for maritime spatial planning (MSP)","volume":"5","author":"Fiorini","year":"2016","journal-title":"Int J e-Navigation Marit Econ"},{"key":"10.1016\/j.ress.2022.108936_bib0055","doi-asserted-by":"crossref","first-page":"798","DOI":"10.1109\/TAES.2013.130377","article-title":"Detecting anomalies from a multitarget tracking output","volume":"50","author":"Ristic","year":"2014","journal-title":"IEEE Trans Aerosp Electron Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0056","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1016\/j.trpro.2014.10.051","article-title":"Grid size optimization for potential field based maritime anomaly detection","volume":"3","author":"Osekowska","year":"2014","journal-title":"Transp Res Procedia"},{"key":"10.1016\/j.ress.2022.108936_bib0057","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1017\/S0373463310000135","article-title":"Discovering knowledge from AIS database for application in VTS","volume":"63","author":"Tsou","year":"2010","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108936_bib0058","doi-asserted-by":"crossref","first-page":"3122","DOI":"10.1109\/TITS.2017.2681810","article-title":"Maritime traffic probabilistic forecasting based on vessels\u2019 waterway patterns and motion behaviors","volume":"18","author":"Xiao","year":"2017","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0059","first-page":"39","article-title":"Anomaly Detection using Context-Aided Target Tracking","volume":"6","author":"George","year":"2011","journal-title":"J Adv Inf Fusion"},{"key":"10.1016\/j.ress.2022.108936_bib0060","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1017\/S0373463319000444","article-title":"Assessment of the Influence of Offshore Wind Farms on Ship Traffic Flow Based on AIS Data","volume":"73","author":"Yu","year":"2020","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108936_bib0061","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.oceaneng.2019.03.052","article-title":"A simulation model for ship navigation in the \u201cXiazhimen\u201d waterway based on statistical analysis of AIS data","volume":"180","author":"Xin","year":"2019","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0062","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.oceaneng.2016.05.012","article-title":"Analysis of waterway transportation in Southeast Texas waterway based on AIS data","volume":"121","author":"Wu","year":"2016","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0063","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.marpol.2014.12.010","article-title":"Teasing out the detail: How our understanding of marine AIS data can better inform industries, developments, and planning","volume":"54","author":"Shelmerdine","year":"2015","journal-title":"Mar Policy"},{"key":"10.1016\/j.ress.2022.108936_bib0064","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1016\/j.oceaneng.2017.10.051","article-title":"Fundamental diagram of ship traffic in the Singapore Strait","volume":"147","author":"Kang","year":"2018","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2022.108936_bib0065","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1017\/S0373463315000582","article-title":"Completeness and accuracy of a wide-area maritime situational picture based on automatic ship reporting systems","volume":"69","author":"Greidanus","year":"2016","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108936_bib0066","article-title":"Data fusion for wide-area maritime surveillance","author":"Mazzarella","year":"2013","journal-title":"Work. Mov. objects Sea"},{"key":"10.1016\/j.ress.2022.108936_bib0067","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1016\/j.asoc.2014.08.067","article-title":"Decision support system for collision avoidance of vessels","volume":"25","author":"Simsir","year":"2014","journal-title":"Appl Soft Comput"},{"key":"10.1016\/j.ress.2022.108936_bib0068","first-page":"33","article-title":"Trajectory prediction of vessels based on data mining and machine learning","volume":"14","author":"Qi","year":"2016","journal-title":"J Digit Inf Manag"},{"key":"10.1016\/j.ress.2022.108936_bib0069","unstructured":"Young BL. Predicting vessel trajectories from AIS data using R. Naval Postgraduate School Monterey United States; 2017."},{"key":"10.1016\/j.ress.2022.108936_bib0070","doi-asserted-by":"crossref","first-page":"1188","DOI":"10.1109\/TITS.2012.2187282","article-title":"Maritime traffic monitoring based on vessel detection, tracking, state estimation, and trajectory prediction","volume":"13","author":"Perera","year":"2012","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0071","doi-asserted-by":"crossref","first-page":"1685","DOI":"10.1109\/LGRS.2015.2419371","article-title":"SAR ship detection and self-reporting data fusion based on traffic knowledge","volume":"12","author":"Mazzarella","year":"2015","journal-title":"IEEE Geosci Remote Sens Lett"},{"key":"10.1016\/j.ress.2022.108936_bib0072","doi-asserted-by":"crossref","first-page":"63823","DOI":"10.1109\/ACCESS.2018.2877659","article-title":"Analyzing congestion interdependencies of ports and container ship routes in the maritime network infrastructure","volume":"6","author":"Stergiopoulos","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.ress.2022.108936_bib0073","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1145\/3152042.3152078","article-title":"Interdependency analysis of junctions for congestion mitigation in transportation infrastructures","volume":"45","author":"Stergiopoulos","year":"2017","journal-title":"ACM Sigmetrics Perform Eval Rev"},{"key":"10.1016\/j.ress.2022.108936_bib0074","doi-asserted-by":"crossref","first-page":"223234","DOI":"10.1109\/ACCESS.2020.3045340","article-title":"Assessing interdependencies and congestion delays in the aviation network","volume":"8","author":"Lykou","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.ress.2022.108936_bib0075","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/j.trb.2016.05.008","article-title":"Clustering of heterogeneous networks with directional flows based on \u201cSnake\u201d similarities","volume":"91","author":"Saeedmanesh","year":"2016","journal-title":"Transp Res Part B Methodol"},{"key":"10.1016\/j.ress.2022.108936_bib0076","doi-asserted-by":"crossref","first-page":"962","DOI":"10.1016\/j.trpro.2017.05.053","article-title":"Dynamic clustering and propagation of congestion in heterogeneously congested urban traffic networks","volume":"23","author":"Saeedmanesh","year":"2017","journal-title":"Transp Res Procedia"},{"key":"10.1016\/j.ress.2022.108936_bib0077","doi-asserted-by":"crossref","first-page":"1639","DOI":"10.1016\/j.trb.2012.08.005","article-title":"On the spatial partitioning of urban transportation networks","volume":"46","author":"Ji","year":"2012","journal-title":"Transp Res Part B Methodol"},{"key":"10.1016\/j.ress.2022.108936_bib0078","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/j.trc.2019.10.016","article-title":"A bi-partitioning approach to congestion pattern recognition in a congested monocentric city","volume":"109","author":"Gu","year":"2019","journal-title":"Transp Res Part C Emerg Technol"},{"key":"10.1016\/j.ress.2022.108936_bib0079","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1017\/S0373463300022384","article-title":"Traffic Capacity","volume":"24","author":"Fujii","year":"1971","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108936_bib0080","doi-asserted-by":"crossref","first-page":"1167","DOI":"10.1109\/TITS.2019.2902927","article-title":"A multiobjective optimization approach for COLREGs-compliant path planning of autonomous surface vehicles verified on networked bridge simulators","volume":"21","author":"Hu","year":"2019","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0081","article-title":"Modeling air traffic situation complexity with a dynamic weighted network approach","author":"Wang","year":"2018","journal-title":"J Adv Transp"},{"key":"10.1016\/j.ress.2022.108936_bib0082","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107772","article-title":"A probabilistic risk approach for the collision detection of multi-ships under spatiotemporal movement uncertainty","author":"Xin","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0083","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.ress.2013.04.006","article-title":"Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River","volume":"118","author":"Zhang","year":"2013","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108936_bib0084","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1016\/j.ins.2016.07.016","article-title":"A graph-based semi-supervised k nearest-neighbor method for nonlinear manifold distributed data classification","volume":"367","author":"Tu","year":"2016","journal-title":"Inf Sci"},{"key":"10.1016\/j.ress.2022.108936_bib0085","doi-asserted-by":"crossref","first-page":"894","DOI":"10.1017\/S0373463319000031","article-title":"Maritime anomaly detection using density-based clustering and recurrent neural network","volume":"72","author":"Zhao","year":"2019","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108936_bib0086","doi-asserted-by":"crossref","first-page":"9373","DOI":"10.1016\/j.eswa.2011.01.135","article-title":"A new hybrid method based on partitioning-based DBSCAN and ant clustering","volume":"38","author":"Jiang","year":"2011","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.ress.2022.108936_bib0087","doi-asserted-by":"crossref","first-page":"2939","DOI":"10.1016\/j.eswa.2013.10.025","article-title":"Algorithm to determine \u03b5-distance parameter in density based clustering","volume":"41","author":"Jahirabadkar","year":"2014","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.ress.2022.108936_bib0088","series-title":"Proc. 2003 SIAM Int. Conf. data Min., SIAM","first-page":"47","article-title":"Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data","author":"Ert\u00f6z","year":"2003"},{"key":"10.1016\/j.ress.2022.108936_bib0089","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1007\/s10115-011-0389-1","article-title":"Effective semi-supervised document clustering via active learning with instance-level constraints","volume":"30","author":"Zhao","year":"2012","journal-title":"Knowl Inf Syst"},{"key":"10.1016\/j.ress.2022.108936_bib0090","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.ins.2015.06.039","article-title":"Recovering the number of clusters in data sets with noise features using feature rescaling factors","volume":"324","author":"De Amorim","year":"2015","journal-title":"Inf Sci (Ny)"},{"key":"10.1016\/j.ress.2022.108936_bib0091","doi-asserted-by":"crossref","first-page":"1210","DOI":"10.1017\/S0373463318000188","article-title":"Ship trajectories pre-processing based on AIS data","volume":"71","author":"Zhao","year":"2018","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2022.108936_bib0092","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.ssci.2016.07.018","article-title":"Development of a quantitative risk assessment model for ship collisions in fairways","volume":"91","author":"Chai","year":"2017","journal-title":"Saf Sci"},{"key":"10.1016\/j.ress.2022.108936_bib0093","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1109\/TSMC.2015.2503605","article-title":"The effect of traffic complexity on the development of near misses on the North Sea","volume":"47","author":"van Westrenen","year":"2015","journal-title":"IEEE Trans Syst Man, Cybern Syst"},{"year":"2016","series-title":"Introduction to data mining","author":"Tan","key":"10.1016\/j.ress.2022.108936_bib0094"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022005518?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022005518?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T21:10:15Z","timestamp":1714252215000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832022005518"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":94,"alternative-id":["S0951832022005518"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2022.108936","relation":{},"ISSN":["0951-8320"],"issn-type":[{"type":"print","value":"0951-8320"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2022.108936","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108936"}}