{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T21:08:33Z","timestamp":1725311313378},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T00:00:00Z","timestamp":1675209600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2023,2]]},"DOI":"10.1016\/j.ress.2022.108916","type":"journal-article","created":{"date-parts":[[2022,10,21]],"date-time":"2022-10-21T16:40:27Z","timestamp":1666370427000},"page":"108916","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":18,"special_numbering":"C","title":["Transfer life prediction of gears by cross-domain health indicator construction and multi-hierarchical long-term memory augmented network"],"prefix":"10.1016","volume":"230","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7338-2407","authenticated-orcid":false,"given":"Dingliang","family":"Chen","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2160-4300","authenticated-orcid":false,"given":"Yi","family":"Qin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0051-7440","authenticated-orcid":false,"given":"Quan","family":"Qian","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Fuqiang","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ress.2022.108916_bib0001","doi-asserted-by":"crossref","first-page":"10865","DOI":"10.1109\/TIE.2019.2959492","article-title":"Macroscopic\u2013microscopic attention in LSTM networks based on fusion features for gear remaining life prediction","volume":"67","author":"Qin","year":"2019","journal-title":"IEEE Trans Ind Electron"},{"key":"10.1016\/j.ress.2022.108916_bib0002","doi-asserted-by":"crossref","first-page":"799","DOI":"10.1016\/j.ymssp.2017.11.016","article-title":"Machinery health prognostics: a systematic review from data acquisition to RUL prediction","volume":"104","author":"Lei","year":"2018","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2022.108916_bib0003","article-title":"Data-driven prognostic scheme for bearings based on a novel health indicator and gated recurrent unit network","author":"Ni","year":"2022","journal-title":"IEEE Trans Ind Inform"},{"key":"10.1016\/j.ress.2022.108916_bib0004","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108610","article-title":"A multi-head attention network with adaptive meta-transfer learning for RUL prediction of rocket engines","author":"Pan","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108916_bib0005","doi-asserted-by":"crossref","first-page":"6438","DOI":"10.1109\/TII.2020.2999442","article-title":"Gated dual attention unit neural networks for remaining useful life prediction of rolling bearings","volume":"17","author":"Qin","year":"2020","journal-title":"IEEE Trans Ind Inform"},{"key":"10.1016\/j.ress.2022.108916_bib0006","doi-asserted-by":"crossref","first-page":"2521","DOI":"10.1109\/TIE.2020.2972443","article-title":"Machine remaining useful life prediction via an attention-based deep learning approach","volume":"68","author":"Chen","year":"2020","journal-title":"IEEE Trans Ind Electron"},{"key":"10.1016\/j.ress.2022.108916_bib0007","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108701","article-title":"Efficient temporal flow transformer accompanied with multi-head probSparse self-attention mechanism for remaining useful life prognostics","volume":"226","author":"Chang","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108916_bib0008","article-title":"A novel prediction network for remaining useful life of rotating machinery","author":"Lin","year":"2022","journal-title":"Int J Adv Manuf Technol"},{"key":"10.1016\/j.ress.2022.108916_bib0009","doi-asserted-by":"crossref","first-page":"4521","DOI":"10.1109\/TII.2020.3021054","article-title":"Joint modeling of degradation and lifetime data for RUL prediction of deteriorating products","volume":"17","author":"Hu","year":"2020","journal-title":"IEEE Trans Ind Inform"},{"key":"10.1016\/j.ress.2022.108916_bib0010","doi-asserted-by":"crossref","first-page":"5634","DOI":"10.1109\/TIE.2017.2782224","article-title":"Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression","volume":"65","author":"Wei","year":"2017","journal-title":"IEEE Trans Ind Electron"},{"key":"10.1016\/j.ress.2022.108916_bib0011","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109029","article-title":"Wiener degradation models with scale-mixture normal distributed measurement errors for RUL prediction","volume":"173","author":"Ge","year":"2022","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2022.108916_bib0012","doi-asserted-by":"crossref","first-page":"856","DOI":"10.1109\/TIE.2021.3053882","article-title":"Prognostics with variational autoencoder by generative adversarial learning","volume":"69","author":"Huang","year":"2021","journal-title":"IEEE Trans Ind Electron"},{"key":"10.1016\/j.ress.2022.108916_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107927","article-title":"Multicellular LSTM-based deep learning model for aero-engine remaining useful life prediction","volume":"216","author":"Xiang","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108916_bib0014","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107878","article-title":"Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction","volume":"215","author":"Li","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108916_bib0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.108573","article-title":"An unsupervised feature learning based health indicator construction method for performance assessment of machines","volume":"167","author":"Guo","year":"2022","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2022.108916_bib0016","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106119","article-title":"Constructing a health indicator for roller bearings by using a stacked auto-encoder with an exponential function to eliminate concussion","volume":"89","author":"Xu","year":"2020","journal-title":"Appl Soft Comput"},{"key":"10.1016\/j.ress.2022.108916_bib0017","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/ab8c0f","article-title":"Sparse auto-encoder with regularization method for health indicator construction and remaining useful life prediction of rolling bearing","volume":"31","author":"She","year":"2020","journal-title":"Meas Sci Technol"},{"key":"10.1016\/j.ress.2022.108916_bib0018","doi-asserted-by":"crossref","first-page":"1447","DOI":"10.1109\/TMECH.2021.3098737","article-title":"Unsupervised health indicator construction by a novel degradation-trend-constrained variational autoencoder and its applications","volume":"27","author":"Qin","year":"2022","journal-title":"IEEE\/ASME Trans Mechatron"},{"key":"10.1016\/j.ress.2022.108916_bib0019","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.108657","article-title":"A semi-supervised GAN method for RUL prediction using failure and suspension histories","volume":"168","author":"He","year":"2022","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2022.108916_bib0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108636","article-title":"Distance self-attention network method for remaining useful life estimation of aeroengine with parallel computing","volume":"225","author":"Xia","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108916_bib0021","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106113","article-title":"Remaining useful life prediction using multi-scale deep convolutional neural network","volume":"89","author":"Li","year":"2020","journal-title":"Appl Soft Comput"},{"key":"10.1016\/j.ress.2022.108916_bib0022","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108624","article-title":"Multi-stage residual life prediction of aero-engine based on real-time clustering and combined prediction model","volume":"225","author":"Liu","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108916_bib0023","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108531","article-title":"Automatic multi-differential deep learning and its application to machine remaining useful life prediction","volume":"223","author":"Xiang","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108916_bib0024","doi-asserted-by":"crossref","first-page":"1658","DOI":"10.1109\/TII.2020.2991796","article-title":"Deep-convolution-based LSTM network for remaining useful life prediction","volume":"17","author":"Ma","year":"2020","journal-title":"IEEE Trans Ind Inf"},{"key":"10.1016\/j.ress.2022.108916_bib0025","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1109\/TAI.2021.3097311","article-title":"A deep adversarial learning prognostics model for remaining useful life prediction of rolling bearing","volume":"2","author":"Lu","year":"2021","journal-title":"IEEE Trans Artif Intell"},{"key":"10.1016\/j.ress.2022.108916_bib0026","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.103587","article-title":"Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction","volume":"91","author":"Xiang","year":"2020","journal-title":"Eng Appl Artif Intell"},{"key":"10.1016\/j.ress.2022.108916_bib0027","doi-asserted-by":"crossref","first-page":"9451","DOI":"10.1109\/TIE.2021.3112987","article-title":"Gated adaptive hierarchical attention unit neural networks for the life prediction of servo motors","volume":"69","author":"Chen","year":"2021","journal-title":"IEEE Trans Ind Electron"},{"key":"10.1016\/j.ress.2022.108916_bib0028","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.108205","article-title":"Long-term gear life prediction based on ordered neurons LSTM neural networks","volume":"165","author":"Yan","year":"2020","journal-title":"Measurement"},{"key":"10.1016\/j.ress.2022.108916_bib0029","doi-asserted-by":"crossref","first-page":"1594","DOI":"10.1109\/TIM.2019.2917735","article-title":"Predicting remaining useful life of rolling bearings based on deep feature representation and transfer learning","volume":"69","author":"Mao","year":"2019","journal-title":"IEEE Trans Instrum Meas"},{"key":"10.1016\/j.ress.2022.108916_bib0030","first-page":"1","article-title":"A deep domain adaptative network for remaining useful life prediction of machines under different working conditions and fault modes","volume":"70","author":"Miao","year":"2021","journal-title":"IEEE Trans Instrum Meas"},{"key":"10.1016\/j.ress.2022.108916_bib0031","first-page":"1","article-title":"A novel remaining useful life prediction method of rolling bearings based on deep transfer auto-encoder","volume":"70","author":"Ding","year":"2021","journal-title":"IEEE Trans Instrum Meas"},{"key":"10.1016\/j.ress.2022.108916_bib0032","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108012","article-title":"Deep residual LSTM with domain-invariance for remaining useful life prediction across domains","volume":"216","author":"Fu","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108916_bib0033","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105843","article-title":"Data alignments in machinery remaining useful life prediction using deep adversarial neural networks","volume":"197","author":"Li","year":"2020","journal-title":"Knowl Based Syst"},{"key":"10.1016\/j.ress.2022.108916_bib0034","doi-asserted-by":"crossref","first-page":"484","DOI":"10.1080\/00401706.2017.1383310","article-title":"Nonparametric modeling and prognosis of condition monitoring signals using multivariate Gaussian convolution processes","volume":"60","author":"Kontar","year":"2018","journal-title":"Technometrics"},{"key":"10.1016\/j.ress.2022.108916_bib0035","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108448","article-title":"Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates","volume":"223","author":"Fallahdizcheh","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108916_bib0036","article-title":"Data-level transfer learning for degradation modeling and prognosis","author":"Fallahdizcheh","year":"2022","journal-title":"J Qual Technol"},{"key":"10.1016\/j.ress.2022.108916_bib0037","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.isatra.2020.12.052","article-title":"Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction","volume":"114","author":"Chen","year":"2021","journal-title":"ISA Trans"},{"key":"10.1016\/j.ress.2022.108916_bib0038","series-title":"Proceedings of the international conference on learning representations","first-page":"1","article-title":"Ordered neurons: integrating tree structures into recurrent neural networks","author":"Shen","year":"2018"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022005312?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022005312?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T21:09:29Z","timestamp":1714252169000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832022005312"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2]]},"references-count":38,"alternative-id":["S0951832022005312"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2022.108916","relation":{},"ISSN":["0951-8320"],"issn-type":[{"value":"0951-8320","type":"print"}],"subject":[],"published":{"date-parts":[[2023,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Transfer life prediction of gears by cross-domain health indicator construction and multi-hierarchical long-term memory augmented network","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2022.108916","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108916"}}