{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:41:30Z","timestamp":1732041690943},"reference-count":39,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T00:00:00Z","timestamp":1664582400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2022,10]]},"DOI":"10.1016\/j.ress.2022.108722","type":"journal-article","created":{"date-parts":[[2022,7,14]],"date-time":"2022-07-14T16:43:36Z","timestamp":1657817016000},"page":"108722","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":31,"special_numbering":"C","title":["Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions"],"prefix":"10.1016","volume":"226","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0804-5791","authenticated-orcid":false,"given":"Wanxiang","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7310-0921","authenticated-orcid":false,"given":"Zhiwu","family":"Shang","sequence":"additional","affiliation":[]},{"given":"Maosheng","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Shiqi","family":"Qian","sequence":"additional","affiliation":[]},{"given":"Zehua","family":"Feng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ress.2022.108722_bib0001","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107638","article-title":"Degradation modeling and remaining useful life prediction for dependent competing failure processes","volume":"212","author":"Yan","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108722_bib0002","doi-asserted-by":"crossref","DOI":"10.1016\/j.engfailanal.2022.106231","article-title":"A critical review on the solenoid valve reliability, performance and remaining useful life including its industrial applications","volume":"136","author":"Angadi","year":"2022","journal-title":"Eng Fail Anal"},{"key":"10.1016\/j.ress.2022.108722_bib0003","doi-asserted-by":"crossref","DOI":"10.1016\/j.microrel.2020.113614","article-title":"Remaining useful life (RUL) estimation of electronic solder joints in rugged environment under random vibration","volume":"107","author":"Muhammad","year":"2020","journal-title":"Microelectron Reliab"},{"key":"10.1016\/j.ress.2022.108722_bib0004","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2020.107173","article-title":"Fuzzy model identification based on mixture distribution analysis for bearings remaining useful life estimation using small training data set","volume":"148","author":"Huang","year":"2021","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2022.108722_bib0005","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.measurement.2019.05.013","article-title":"Remaining useful life prediction of ultrasonic motor based on Elman neural network with improved particle swarm optimization","volume":"143","author":"Yang","year":"2019","journal-title":"Measurement"},{"key":"10.1016\/j.ress.2022.108722_bib0006","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106474","article-title":"Similarity-based particle filter for remaining useful life prediction with enhanced performance","volume":"94","author":"Cai","year":"2020","journal-title":"Appl Soft Comput"},{"issue":"1","key":"10.1016\/j.ress.2022.108722_bib0007","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1109\/TR.2018.2882682","article-title":"A hybrid prognostics approach for estimating remaining useful life of rolling element bearings","volume":"69","author":"Wang","year":"2020","journal-title":"IEEE Trans Reliab"},{"key":"10.1016\/j.ress.2022.108722_bib0008","doi-asserted-by":"crossref","DOI":"10.1016\/j.mechmachtheory.2020.103967","article-title":"Remaining useful life prediction of rolling element bearings based on simulated performance degradation dictionary","volume":"153","author":"Cui","year":"2020","journal-title":"Mech Mach Theory"},{"key":"10.1016\/j.ress.2022.108722_bib0009","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106113","article-title":"Remaining useful life prediction using multi-scale deep convolutional neural network","volume":"89","author":"Li","year":"2020","journal-title":"Appl Soft Comput"},{"key":"10.1016\/j.ress.2022.108722_bib0010","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.neucom.2019.10.064","article-title":"Recurrent convolutional neural network: a new framework for remaining useful life prediction of machinery","volume":"379","author":"Wang","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ress.2022.108722_bib0011","article-title":"Fingerprinting based data abstraction technique for remaining useful life estimation in a multi-stage gearbox","volume":"174","author":"Hemanth","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.ress.2022.108722_bib0012","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.isatra.2020.08.031","article-title":"Remaining useful life prediction techniques for electric valves based on convolution auto encoder and long short term memory","volume":"108","author":"Wang","year":"2021","journal-title":"ISA Trans"},{"key":"10.1016\/j.ress.2022.108722_bib0013","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.108753","article-title":"An enhanced encoder\u2013decoder framework for bearing remaining useful life prediction","volume":"170","author":"Liu","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.ress.2022.108722_bib0014","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107871","article-title":"Remaining useful life prediction based on intentional noise injection and feature reconstruction","volume":"215","author":"Xiao","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108722_bib0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2022.108444","article-title":"A novel dual-stream self-attention neural network for remaining useful life estimation of mechanical systems","volume":"222","author":"Xu","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108722_bib0016","doi-asserted-by":"crossref","first-page":"1409","DOI":"10.1007\/s40747-021-00606-4","article-title":"Machine remaining life prediction based on multi-layer self-attention and temporal convolution network","volume":"8","author":"Shang","year":"2021","journal-title":"Complex Intell Syst"},{"key":"10.1016\/j.ress.2022.108722_bib0017","doi-asserted-by":"crossref","first-page":"1197","DOI":"10.1109\/TII.2020.2983760","article-title":"Remaining useful life prediction using a novel feature-attention-based end-to-end approach","volume":"17","author":"Liu","year":"2021","journal-title":"IEEE Trans Ind Inform"},{"key":"10.1016\/j.ress.2022.108722_bib0018","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2022.108211","article-title":"Multi-scale deep neural network approach with attention mechanism for remaining useful life estimation","volume":"169","author":"Kara","year":"2022","journal-title":"Comput Ind Eng"},{"key":"10.1016\/j.ress.2022.108722_bib0019","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2022.108466","article-title":"A multi-source information transfer learning method with subdomain adaptation for cross-domain fault diagnosis","volume":"243","author":"Tian","year":"2022","journal-title":"Knowl Based Syst"},{"key":"10.1016\/j.ress.2022.108722_bib0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2022.104733","article-title":"Learning transfer feature representations for gas path fault diagnosis across gas turbine fleet","volume":"111","author":"Li","year":"2022","journal-title":"Eng Appl Artif Intell"},{"key":"10.1016\/j.ress.2022.108722_bib0021","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2021.108487","article-title":"A perspective survey on deep transfer learning for fault diagnosis in industrial scenarios: theories, applications and challenges","volume":"167","author":"Li","year":"2022","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2022.108722_bib0022","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109090","article-title":"Transfer remaining useful life estimation of bearing using depth-wise separable convolution recurrent network","volume":"176","author":"Huang","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.ress.2022.108722_bib0023","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109287","article-title":"Transfer learning for remaining useful life prediction of multi-conditions bearings based on bidirectional-GRU network","volume":"178","author":"Cao","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.ress.2022.108722_bib0024","article-title":"Rolling bearing prognostic analysis for domain adaptation under different operating conditions","volume":"139","author":"Rathore","year":"2022","journal-title":"Eng Fail Anal"},{"key":"10.1016\/j.ress.2022.108722_bib0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107946","article-title":"Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors","volume":"216","author":"Zhuang","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108722_bib0026","series-title":"Proceedings of the 38th international conference on machine learning","first-page":"1","article-title":"Representation subspace distance for domain adaptation regression","author":"Chen","year":"2021"},{"key":"10.1016\/j.ress.2022.108722_bib0027","unstructured":"Bai S., Kolter J.Z., Koltun V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. https:\/\/arxiv.org\/pdf\/1803.01271.pdf, 2018."},{"key":"10.1016\/j.ress.2022.108722_bib0028","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1007\/978-981-15-5345-5_13","article-title":"Transfer learning: survey and classification","volume":"1168","author":"Agarwal","year":"2020","journal-title":"Smart Innov Commun Comput Sci"},{"key":"10.1016\/j.ress.2022.108722_bib0029","doi-asserted-by":"crossref","DOI":"10.1016\/j.engfailanal.2021.105385","article-title":"LSTM-based multi-layer self-attention method for remaining useful life estimation of mechanical systems","volume":"125","author":"Xia","year":"2021","journal-title":"Eng Fail Anal"},{"key":"10.1016\/j.ress.2022.108722_bib0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107878","article-title":"Hierarchical attention graph convolutional network to fuse multi-sensor signals for remaining useful life prediction","volume":"215","author":"Li","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2022.108722_bib0031","series-title":"Proceeding of the IEEE\/CVF Conference on computer vision and pattern recognition (CVPR)","first-page":"11531","article-title":"ECA-Net: efficient channel attention for deep convolutional neural networks","author":"Wang","year":"2020"},{"key":"10.1016\/j.ress.2022.108722_bib0032","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","first-page":"3","article-title":"CBAM: convolutional block attention module","author":"Woo","year":"2018"},{"issue":"7","key":"10.1016\/j.ress.2022.108722_bib0033","doi-asserted-by":"crossref","first-page":"4681","DOI":"10.1109\/TII.2019.2943898","article-title":"Deep residual shrinkage networks for fault diagnosis","volume":"16","author":"Zhao","year":"2020","journal-title":"IEEE Trans Ind Inf"},{"key":"10.1016\/j.ress.2022.108722_bib0034","series-title":"Proceeding of the IEEE international conference on prognostics and health management","first-page":"1","article-title":"PRONOSTIA: an experimental platform for bearings accelerated degradation tests","author":"Nectoux","year":"2012"},{"key":"10.1016\/j.ress.2022.108722_bib0035","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1016\/j.jmsy.2021.07.008","article-title":"Temporal convolutional network with soft thresholding and attention mechanism for machinery prognostics","volume":"60","author":"Wang","year":"2021","journal-title":"J Manuf Syst"},{"key":"10.1016\/j.ress.2022.108722_bib0036","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2019.106602","article-title":"A new data-driven transferable remaining useful life prediction approach for bearing under different working conditions","volume":"139","author":"Zhu","year":"2020","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2022.108722_bib0037","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2020.108286","article-title":"Transferable convolutional neural network based remaining useful life prediction of bearing under multiple failure behaviors","volume":"168","author":"Cheng","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.ress.2022.108722_bib0038","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2019.106682","article-title":"Remaining useful lifetime prediction via deep domain adaptation","volume":"195","author":"Costa","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"issue":"2","key":"10.1016\/j.ress.2022.108722_bib0039","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/TNN.2010.2091281","article-title":"Domain adaptation via transfer component analysis","volume":"22","author":"Pan","year":"2011","journal-title":"IEEE Trans Neural Netw"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022003465?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832022003465?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T20:34:44Z","timestamp":1714250084000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832022003465"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10]]},"references-count":39,"alternative-id":["S0951832022003465"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2022.108722","relation":{},"ISSN":["0951-8320"],"issn-type":[{"value":"0951-8320","type":"print"}],"subject":[],"published":{"date-parts":[[2022,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Remaining useful life prediction based on transfer multi-stage shrinkage attention temporal convolutional network under variable working conditions","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2022.108722","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108722"}}