{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:31:28Z","timestamp":1732041088958},"reference-count":81,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T00:00:00Z","timestamp":1648771200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2022,4]]},"DOI":"10.1016\/j.ress.2021.108317","type":"journal-article","created":{"date-parts":[[2022,1,2]],"date-time":"2022-01-02T22:20:55Z","timestamp":1641162055000},"page":"108317","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":89,"special_numbering":"C","title":["A predictive analytics method for maritime traffic flow complexity estimation in inland waterways"],"prefix":"10.1016","volume":"220","author":[{"given":"Mingyang","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Di","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shanshan","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Pentti","family":"Kujala","sequence":"additional","affiliation":[]},{"given":"Spyros","family":"Hirdaris","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ress.2021.108317_bib0001","unstructured":"UNCDAT. (2020). Review of Maritime Transport 2019."},{"key":"10.1016\/j.ress.2021.108317_bib0002","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.ress.2018.03.033","article-title":"Maritime navigation accidents and risk indicators: an exploratory statistical analysis using AIS data and accident reports","volume":"176","author":"Bye","year":"2018","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0003","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.ress.2013.04.006","article-title":"Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River","volume":"118","author":"Zhang","year":"2013","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0004","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.107070","article-title":"Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network","volume":"203","author":"Fan","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0005","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.ress.2016.11.017","article-title":"Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: ship collision probability)","volume":"164","author":"Christian","year":"2017","journal-title":"Reliab Eng Syst Saf"},{"issue":"1","key":"10.1016\/j.ress.2021.108317_bib0006","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1017\/S0373463314000502","article-title":"Assessing grounding frequency using ship traffic and waterway complexity","volume":"68","author":"Mazaheri","year":"2015","journal-title":"J Navigat"},{"issue":"1","key":"10.1016\/j.ress.2021.108317_bib0007","first-page":"209","article-title":"Improving conflicts detection in maritime traffic: case studies on the effect of traffic complexity on ship collisions","volume":"234","author":"Van Westrenen","year":"2020","journal-title":"Proc Inst Mech Eng Part M J Eng Marit Environ"},{"key":"10.1016\/j.ress.2021.108317_bib0008","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.cmpb.2016.05.010","article-title":"A novel encoding Lempel\u2013Ziv complexity algorithm for quantifying the irregularity of physiological time series","volume":"133","author":"Zhang","year":"2016","journal-title":"Comput Methods Programs Biomed"},{"key":"10.1016\/j.ress.2021.108317_bib0009","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.oceaneng.2018.07.040","article-title":"Assessing ship risk model applicability to marine autonomous surface ships","volume":"165","author":"Thieme","year":"2018","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2021.108317_bib0010","doi-asserted-by":"crossref","first-page":"500","DOI":"10.1016\/j.oceaneng.2015.04.051","article-title":"Modelling of marine traffic flow complexity","volume":"104","author":"Wen","year":"2015","journal-title":"Ocean Eng"},{"issue":"10","key":"10.1016\/j.ress.2021.108317_bib0011","doi-asserted-by":"crossref","first-page":"813","DOI":"10.1002\/acs.1192","article-title":"A probabilistic measure of air traffic complexity in 3-D airspace","volume":"24","author":"Prandini","year":"2010","journal-title":"Int J Adapt Control Signal Process"},{"key":"10.1016\/j.ress.2021.108317_bib0012","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.trc.2019.02.014","article-title":"Travel time reliability measure based on predictability using the Lempel\u2013Ziv algorithm","volume":"101","author":"Li","year":"2019","journal-title":"Trans Res C"},{"issue":"6","key":"10.1016\/j.ress.2021.108317_bib0013","doi-asserted-by":"crossref","first-page":"1449","DOI":"10.1017\/S037346331900033X","article-title":"Towards a model of regional vessel near-miss collision risk assessment for open waters based on AIS data","volume":"72","author":"Zhang","year":"2019","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2021.108317_bib0014","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2020.107127","article-title":"Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis","volume":"204","author":"Zhang","year":"2020","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0015","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.oceaneng.2015.07.046","article-title":"A method for detecting possible near miss ship collisions from AIS data","volume":"107","author":"Zhang","year":"2015","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2021.108317_bib0016","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1016\/j.trc.2017.11.024","article-title":"Aerial observations of moving synchronized flow patterns in over-saturated city traffic","volume":"86","author":"Kaufmann","year":"2018","journal-title":"Transp Res Part C"},{"issue":"1","key":"10.1016\/j.ress.2021.108317_bib0017","doi-asserted-by":"crossref","DOI":"10.1103\/PhysRevE.100.012303","article-title":"Statistical physics of synchronized traffic flow: spatiotemporal competition between S\u2192 F and S\u2192 J instabilities","volume":"100","author":"Kerner","year":"2019","journal-title":"Phys Rev E"},{"key":"10.1016\/j.ress.2021.108317_bib0018","doi-asserted-by":"crossref","DOI":"10.1016\/j.compenvurbsys.2019.101426","article-title":"Discovering traffic congestion through traffic flow patterns generated by moving object trajectories","volume":"80","author":"Kohan","year":"2020","journal-title":"Comput Environ Urban Syst"},{"key":"10.1016\/j.ress.2021.108317_bib0019","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.oceaneng.2016.07.059","article-title":"An advanced method for detecting possible near miss ship collisions from AIS data","volume":"124","author":"Zhang","year":"2016","journal-title":"Ocean Eng"},{"issue":"9","key":"10.1016\/j.ress.2021.108317_bib0020","doi-asserted-by":"crossref","first-page":"1188","DOI":"10.1007\/BF02507729","article-title":"Mathematical foundation of a new complexity measure","volume":"26","author":"En-hua","year":"2005","journal-title":"Appl Math Mech"},{"key":"10.1016\/j.ress.2021.108317_bib0021","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.oceaneng.2012.06.028","article-title":"Detection and tracking of ships in open sea with rapidly moving buoy-mounted camera system","volume":"54","author":"Fefilatyev","year":"2012","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2021.108317_bib0022","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.aap.2017.01.018","article-title":"Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers","volume":"101","author":"Oviedo-Trespalacios","year":"2017","journal-title":"Accid Anal Prevent"},{"key":"10.1016\/j.ress.2021.108317_bib0023","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.ress.2017.11.018","article-title":"A new definition of complexity in a risk analysis setting","volume":"171","author":"Jensen","year":"2018","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0024","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.ress.2013.07.004","article-title":"A metric and frameworks for resilience analysis of engineered and infrastructure systems","volume":"121","author":"Francis","year":"2014","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108145","article-title":"Accident susceptibility index for a passenger ship-a framework and case study","volume":"218","author":"Montewka","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0026","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.tre.2017.07.011","article-title":"Big AIS data based spatial-temporal analyses of ship traffic in Singapore port waters","volume":"129","author":"Zhang","year":"2019","journal-title":"Transp Res Part E"},{"issue":"1","key":"10.1016\/j.ress.2021.108317_bib0027","first-page":"200","article-title":"An agent-based simulation on navigational capacity of multi-bridge waterways","volume":"231","author":"Sang","year":"2017","journal-title":"Proc Inst Mech Eng Part M J Eng Marit Environ"},{"key":"10.1016\/j.ress.2021.108317_bib0028","series-title":"In 42nd IEEE International Conference on Decision and Control (IEEE Cat. No. 03CH37475)","first-page":"5335","article-title":"Probabilistic safety analysis in three dimensional aircraft flight","volume":"5","author":"Hu","year":"2003"},{"key":"10.1016\/j.ress.2021.108317_bib0029","first-page":"2018","article-title":"A ship domain-based method of determining action distances for evasive manoeuvres in stand-on situations","author":"Szlapczynski","year":"2018","journal-title":"J Adv Transp"},{"key":"10.1016\/j.ress.2021.108317_bib0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2019.106130","article-title":"Probabilistic ship domain with applications to ship collision risk assessment","volume":"186","author":"Zhang","year":"2019","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2021.108317_bib0031","doi-asserted-by":"crossref","DOI":"10.1016\/j.ssci.2020.104708","article-title":"Collision risk measure for triggering evasive actions of maritime autonomous surface ships","volume":"127","author":"Huang","year":"2020","journal-title":"Saf Sci"},{"key":"10.1016\/j.ress.2021.108317_bib0032","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.oceaneng.2017.09.053","article-title":"Safety distance modeling for ship escort operations in Arctic ice-covered waters","volume":"146","author":"Zhang","year":"2017","journal-title":"Ocean Eng"},{"issue":"1","key":"10.1016\/j.ress.2021.108317_bib0033","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.ress.2010.09.003","article-title":"Traffic simulation based ship collision probability modeling","volume":"96","author":"Goerlandt","year":"2011","journal-title":"Reliab Eng Syst Saf"},{"issue":"8","key":"10.1016\/j.ress.2021.108317_bib0034","doi-asserted-by":"crossref","first-page":"1349","DOI":"10.1016\/j.ress.2009.02.028","article-title":"Analysis of the marine traffic safety in the Gulf of Finland","volume":"94","author":"Kujala","year":"2009","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0035","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.trc.2017.05.005","article-title":"Controlling road congestion via a low-complexity route reservation approach","volume":"81","author":"Menelaou","year":"2017","journal-title":"Transp Res Part C"},{"key":"10.1016\/j.ress.2021.108317_bib0036","article-title":"Traffic sign detection under challenging conditions: a deeper look into performance variations and spectral characteristics","author":"Temel","year":"2019","journal-title":"IEEE Trans Intell Transp Syst"},{"issue":"1","key":"10.1016\/j.ress.2021.108317_bib0037","doi-asserted-by":"crossref","first-page":"9","DOI":"10.3141\/1897-02","article-title":"Chaos theory and transportation systems: instructive example","volume":"1897","author":"Frazier","year":"2004","journal-title":"Transp Res Rec"},{"issue":"15","key":"10.1016\/j.ress.2021.108317_bib0038","first-page":"22","article-title":"Complexity measure of traffic flow based on union entropy and Co-complexity","volume":"46","author":"Zhang","year":"2009","journal-title":"Comput Eng Appl"},{"issue":"31","key":"10.1016\/j.ress.2021.108317_bib0039","first-page":"196","article-title":"Calculation Lyapunov exponent spectrum of time series based on least-squared support vector machine","volume":"45","author":"Zhang","year":"2009","journal-title":"Comput Eng Appl"},{"key":"10.1016\/j.ress.2021.108317_bib0040","doi-asserted-by":"crossref","first-page":"195","DOI":"10.5194\/npg-26-195-2019","article-title":"Fluctuations of finite-time Lyapunov exponents in an intermediate-complexity atmospheric model: a multivariate and large-deviation perspective","volume":"26","author":"Kwasniok","year":"2019","journal-title":"Nonlinear Process Geophys"},{"issue":"4\u20135","key":"10.1016\/j.ress.2021.108317_bib0041","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1016\/j.physleta.2006.04.063","article-title":"Nonlinear analysis of traffic time series at different temporal scales","volume":"357","author":"Shang","year":"2006","journal-title":"Phys Lett A"},{"key":"10.1016\/j.ress.2021.108317_bib0042","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.sysarc.2018.06.004","article-title":"A multiplayer online car racing virtual-reality game based on internet of brains","volume":"89","author":"Yeh","year":"2018","journal-title":"J Syst Archit"},{"issue":"20","key":"10.1016\/j.ress.2021.108317_bib0043","doi-asserted-by":"crossref","first-page":"746","DOI":"10.1007\/s12517-016-2782-2","article-title":"Complexity measurement of regional groundwater resources system using improved Lempel-Ziv complexity algorithm","volume":"9","author":"Liu","year":"2016","journal-title":"Arabian J Geosci"},{"key":"10.1016\/j.ress.2021.108317_bib0044","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.trc.2016.10.011","article-title":"Predicting travel time reliability using mobile phone GPS data","volume":"75","author":"Woodard","year":"2017","journal-title":"Transp Res Part C"},{"key":"10.1016\/j.ress.2021.108317_bib0045","doi-asserted-by":"crossref","first-page":"590","DOI":"10.1016\/j.oceaneng.2018.06.054","article-title":"Incorporating evidential reasoning and TOPSIS into group decision-making under uncertainty for handling ship without command","volume":"164","author":"Wu","year":"2018","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2021.108317_bib0046","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.oceaneng.2018.03.085","article-title":"A novel ship trajectory reconstruction approach using AIS data","volume":"159","author":"Zhang","year":"2018","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2021.108317_bib0047","unstructured":"IALA. (2004). IALA guideline no. 1028 on the Automatic Identification System (AIS) volume 1, part I operational issues edition 1.3. Retrieved from https:\/\/www.e-navigation.nl\/sites\/default\/files\/universal-automatic-identification-system-ais-volume-1-part-2-technical-issues-1029.pdf."},{"key":"10.1016\/j.ress.2021.108317_bib0048","unstructured":"IMO, AIS transponders. http:\/\/www.imo.org\/en\/ourwork\/safety\/navigation\/pages\/ais.aspx accessed on 24 Oct 2019."},{"issue":"3","key":"10.1016\/j.ress.2021.108317_bib0049","doi-asserted-by":"crossref","first-page":"557","DOI":"10.1017\/S0373463310000044","article-title":"Great circle navigation with vectorial methods","volume":"63","author":"Nastro","year":"2010","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2021.108317_bib0050","series-title":"Deliverable Report D2.4","author":"Hirdaris","year":"2019"},{"key":"10.1016\/j.ress.2021.108317_bib0051","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.ress.2016.10.007","article-title":"A multi-criteria decision analysis approach for importance identification and ranking of network components","volume":"158","author":"Almoghathawi","year":"2017","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0052","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.trc.2017.06.007","article-title":"A copula-based approach for estimating the travel time reliability of urban arterial","volume":"82","author":"Chen","year":"2017","journal-title":"Transp Res Part C"},{"issue":"12\u201313","key":"10.1016\/j.ress.2021.108317_bib0053","doi-asserted-by":"crossref","first-page":"2096","DOI":"10.1016\/j.neucom.2010.12.032","article-title":"Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm","volume":"74","author":"Hong","year":"2011","journal-title":"Neurocomputing"},{"key":"10.1016\/j.ress.2021.108317_bib0054","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.neucom.2015.01.010","article-title":"Vessel traffic flow forecasting by RSVR with chaotic cloud simulated annealing genetic algorithm and KPCA","volume":"157","author":"Li","year":"2015","journal-title":"Neurocomputing"},{"issue":"6","key":"10.1016\/j.ress.2021.108317_bib0055","doi-asserted-by":"crossref","first-page":"1212","DOI":"10.1007\/s11036-017-0873-2","article-title":"Cloud-assisted mobile crowd sensing for traffic congestion control","volume":"22","author":"Yan","year":"2017","journal-title":"Mobile Netw Appl"},{"key":"10.1016\/j.ress.2021.108317_bib0056","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1016\/j.ress.2017.06.011","article-title":"Prior elicitation for Bayesian generalised linear models with application to risk control option assessment","volume":"167","author":"Hosack","year":"2017","journal-title":"Reliab Eng Syst Saf"},{"issue":"19","key":"10.1016\/j.ress.2021.108317_bib0057","first-page":"26","article-title":"Diagnostic time series models for road traffic accidents data","volume":"2","author":"Al-Hasani","year":"2019","journal-title":"Int J Appl Stat Econ"},{"issue":"5","key":"10.1016\/j.ress.2021.108317_bib0058","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1109\/JSAC.2019.2906746","article-title":"Fairness-aware dynamic rate control and flow scheduling for network utility maximization in network service chain","volume":"37","author":"Gu","year":"2019","journal-title":"IEEE J Sel Areas Commun"},{"key":"10.1016\/j.ress.2021.108317_bib0059","first-page":"1","article-title":"An FMEA-based TOPSIS approach under single valued neutrosophic sets for maritime risk evaluation: the case of ship navigation safety","author":"Ba\u015fhan","year":"2020","journal-title":"Soft Comput"},{"issue":"5968","key":"10.1016\/j.ress.2021.108317_bib0060","doi-asserted-by":"crossref","first-page":"1018","DOI":"10.1126\/science.1177170","article-title":"Limits of predictability in human mobility","volume":"327","author":"Song","year":"2010","journal-title":"Science"},{"issue":"3","key":"10.1016\/j.ress.2021.108317_bib0061","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1017\/S0373463321000059","article-title":"Modelling liquefied natural gas ship traffic in port based on cellular automaton and multi-agent system","volume":"74","author":"Liu","year":"2021","journal-title":"J Navig"},{"key":"10.1016\/j.ress.2021.108317_bib0062","series-title":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","first-page":"2333","article-title":"November). Exploring characteristics and fundamental relations of area-wide vessel traffic flow","author":"Liu","year":"2018"},{"key":"10.1016\/j.ress.2021.108317_bib0063","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107677","article-title":"A two-stage black-spot identification model for inland waterway transportation","volume":"213","author":"Zhang","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0064","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107463","article-title":"Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics","volume":"209","author":"Rong","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0065","article-title":"Assessment of ship collision estimation methods using AIS data","author":"Silveira","year":"2014","journal-title":"Marit Technol Eng"},{"issue":"12","key":"10.1016\/j.ress.2021.108317_bib0066","doi-asserted-by":"crossref","first-page":"1194","DOI":"10.3390\/e21121194","article-title":"The eigenvalue complexity of sequences in the real domain","volume":"21","author":"Liu","year":"2019","journal-title":"Entropy"},{"key":"10.1016\/j.ress.2021.108317_bib0067","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107474","article-title":"Geometrical risk evaluation of the collisions between ships and offshore installations using rule-based Bayesian reasoning","volume":"210","author":"Yu","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0068","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107674","article-title":"A big data analytics method for the evaluation of ship-ship collision risk reflecting hydrometeorological conditions","volume":"213","author":"Zhang","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0069","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.ssci.2018.07.002","article-title":"Use of HFACS and fault tree model for collision risk factors analysis of icebreaker assistance in ice-covered waters","volume":"111","author":"Zhang","year":"2019","journal-title":"Saf Sci"},{"key":"10.1016\/j.ress.2021.108317_bib0070","article-title":"Expressing and communicating uncertainty in relation to quantitative risk analysis","volume":"4","author":"Flage","year":"2009","journal-title":"Reliability"},{"key":"10.1016\/j.ress.2021.108317_bib0071","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2020.108215","article-title":"AIS data-driven approach to estimate navigable capacity of busy waterways focusing on ships entering and leaving port","volume":"218","author":"Liu","year":"2020","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2021.108317_bib0072","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2021.109605","article-title":"A method for the direct assessment of ship collision damage and flooding risk in real conditions","volume":"237","author":"Zhang","year":"2021","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2021.108317_bib0073","article-title":"Review of techniques and challenges of human and organizational factors analysis in maritime transportation","author":"Wu","year":"2021","journal-title":"Reliab Eng Syst Saf"},{"issue":"5","key":"10.1016\/j.ress.2021.108317_bib0074","doi-asserted-by":"crossref","first-page":"44","DOI":"10.4031\/MTSJ.55.5.14","article-title":"A probabilistic decision-making system for joining traffic lanes within an inland traffic separation scheme","volume":"55","author":"Cheng","year":"2021","journal-title":"Mar Technol Soc J"},{"key":"10.1016\/j.ress.2021.108317_bib0075","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.108024","article-title":"An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland","volume":"217","author":"Mazurek","year":"2022","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2021.108317_bib0076","article-title":"The impact of shipping 4.0 on controlling shipping accidents: a systematic literature review","author":"Sepehri","year":"2021","journal-title":"Ocean Eng"},{"key":"10.1016\/j.ress.2021.108317_bib77","first-page":"1","article-title":"New Particle Formation Events Detection with Deep Learning","author":"Su","year":"2021","journal-title":"Atmospheric Chemistry and Physics Discussions"},{"key":"10.1016\/j.ress.2021.108317_bib78","unstructured":"Zhang, M., Kujala, P., Musharraf, M., Matuisiak, J., Zhang, J., Hirdaris, S. (2019). A machine learning method for the prediction of ship motion trajectories in real operational conditions. Safety science (Forthcoming)."},{"key":"10.1016\/j.ress.2021.108317_bib79","doi-asserted-by":"crossref","first-page":"104838","DOI":"10.1016\/j.ssci.2020.104838","article-title":"A probabilistic model of human error assessment for autonomous cargo ships focusing on human\u2013autonomy collaboration","volume":"130","author":"Zhang","year":"2020","journal-title":"Safety science"},{"key":"10.1016\/j.ress.2021.108317_bib80","doi-asserted-by":"crossref","first-page":"108090","DOI":"10.1016\/j.ress.2021.108090","article-title":"Evaluation of urban bus service reliability on variable time horizons using a hybrid deep learning method","volume":"217","author":"Zhou","year":"2022","journal-title":"Reliability Engineering & System Safety"},{"key":"10.1016\/j.ress.2021.108317_bib81","doi-asserted-by":"crossref","first-page":"108436","DOI":"10.1016\/j.oceaneng.2020.108436","article-title":"A novel real-time collision risk awareness method based on velocity obstacle considering uncertainties in ship dynamics","volume":"220","author":"Yuan","year":"2021","journal-title":"Ocean Engineering"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832021007870?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832021007870?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,11]],"date-time":"2023-03-11T18:33:15Z","timestamp":1678559595000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832021007870"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4]]},"references-count":81,"alternative-id":["S0951832021007870"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2021.108317","relation":{},"ISSN":["0951-8320"],"issn-type":[{"value":"0951-8320","type":"print"}],"subject":[],"published":{"date-parts":[[2022,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A predictive analytics method for maritime traffic flow complexity estimation in inland waterways","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2021.108317","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108317"}}