{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,14]],"date-time":"2025-04-14T20:36:05Z","timestamp":1744662965327},"reference-count":44,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,8,1]],"date-time":"2019-08-01T00:00:00Z","timestamp":1564617600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2019,8]]},"DOI":"10.1016\/j.ress.2019.03.018","type":"journal-article","created":{"date-parts":[[2019,3,4]],"date-time":"2019-03-04T20:13:39Z","timestamp":1551730419000},"page":"251-262","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":233,"special_numbering":"C","title":["A new dynamic predictive maintenance framework using deep learning for failure prognostics"],"prefix":"10.1016","volume":"188","author":[{"given":"Khanh T.P.","family":"Nguyen","sequence":"first","affiliation":[]},{"given":"Kamal","family":"Medjaher","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9","key":"10.1016\/j.ress.2019.03.018_bib0001","article-title":"Maintenance and operation of infrastructure systems: review","volume":"142","author":"Snchez-Silva Mauricio","year":"2016","journal-title":"J Struct Eng"},{"key":"10.1016\/j.ress.2019.03.018_bib0002","series-title":"How AI affects the future predictive maintenance: a primer of deep learning","isbn-type":"print","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/978-981-10-5768-7","author":"Wang","year":"2018","ISBN":"http:\/\/id.crossref.org\/isbn\/9789811057670"},{"key":"10.1016\/j.ress.2019.03.018_bib0003","series-title":"From prognostics and health systems management to predictive maintenance 1: monitoring and prognostics","author":"Gouriveau","year":"2016"},{"key":"10.1016\/j.ress.2019.03.018_bib0004","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.ress.2014.04.006","article-title":"Planning structural inspection and maintenance policies via dynamic programming and markov processes. part ii: pomdp implementation","volume":"130","author":"Papakonstantinou","year":"2014","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2019.03.018_bib0005","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.ress.2014.04.005","article-title":"Planning structural inspection and maintenance policies via dynamic programming and markov processes. part i: theory","volume":"130","author":"Papakonstantinou","year":"2014","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2019.03.018_bib0006","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.ress.2014.04.004","article-title":"Maintaining a system subject to uncertain technological evolution","volume":"128","author":"Nguyen","year":"2014","journal-title":"Reliab Eng Syst Saf"},{"issue":"8","key":"10.1016\/j.ress.2019.03.018_bib0007","doi-asserted-by":"crossref","first-page":"2212","DOI":"10.1080\/00207543.2016.1229069","article-title":"Acquisition of new technology information for maintenance and replacement policies","volume":"55","author":"Nguyen","year":"2017","journal-title":"Int J Prod Res"},{"issue":"4","key":"10.1016\/j.ress.2019.03.018_bib0008","doi-asserted-by":"crossref","first-page":"744","DOI":"10.1109\/TR.2010.2085572","article-title":"Statistically planned and individually improved predictive maintenance management for continuously monitored degrading systems","volume":"59","author":"You","year":"2010","journal-title":"IEEE Trans Reliab"},{"issue":"1","key":"10.1016\/j.ress.2019.03.018_bib0009","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1109\/TR.2011.2104432","article-title":"Cooperative predictive maintenance of repairable systems with dependent failure modes and resource constraint","volume":"60","author":"Fan","year":"2011","journal-title":"IEEE Trans Reliab"},{"issue":"1","key":"10.1016\/j.ress.2019.03.018_bib0010","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1109\/TR.2014.2337791","article-title":"Multi-level decision-making for the predictive maintenance of k-out-of-n:f deteriorating systems","volume":"64","author":"Huynh","year":"2015","journal-title":"IEEE Trans Reliab"},{"issue":"1","key":"10.1016\/j.ress.2019.03.018_bib0011","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ejor.2010.11.018","article-title":"Remaining useful life estimation a review on the statistical data driven approaches","volume":"213","author":"Si","year":"2011","journal-title":"Eur J Oper Res"},{"issue":"4","key":"10.1016\/j.ress.2019.03.018_bib0012","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1109\/TR.2013.2285318","article-title":"Remaining useful life estimation in rolling bearings utilizing data-driven probabilistic e-support vectors regression","volume":"62","author":"Loutas","year":"2013","journal-title":"IEEE Trans Reliab"},{"issue":"7","key":"10.1016\/j.ress.2019.03.018_bib0013","doi-asserted-by":"crossref","first-page":"1751","DOI":"10.1016\/j.engappai.2013.02.006","article-title":"Remaining useful life estimation based on nonlinear feature reduction and support vector regression","volume":"26","author":"Benkedjouh","year":"2013","journal-title":"Eng Appl Artif Intell"},{"issue":"5","key":"10.1016\/j.ress.2019.03.018_bib0014","doi-asserted-by":"crossref","first-page":"1037","DOI":"10.1007\/s10845-014-0933-4","article-title":"Data-driven prognostic method based on bayesian approaches for direct remaining useful life prediction","volume":"27","author":"Mosallam","year":"2016","journal-title":"J Intell Manuf"},{"issue":"2","key":"10.1016\/j.ress.2019.03.018_bib0015","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1109\/TR.2012.2194177","article-title":"A data-driven failure prognostics method based on mixture of gaussians hidden markov models","volume":"61","author":"Tobon-Mejia","year":"2012","journal-title":"IEEE Trans Reliab"},{"issue":"2","key":"10.1016\/j.ress.2019.03.018_bib0016","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1109\/TR.2012.2194175","article-title":"Remaining useful life estimation of critical components with application to bearings","volume":"61","author":"Medjaher","year":"2012","journal-title":"IEEE Trans Reliab"},{"issue":"5\u20138","key":"10.1016\/j.ress.2019.03.018_bib0017","doi-asserted-by":"crossref","first-page":"1685","DOI":"10.1007\/s00170-013-5065-z","article-title":"Nonparametric time series modelling for industrial prognostics and health management","volume":"69","author":"Mosallam","year":"2013","journal-title":"Int J Adv Manuf Technol"},{"issue":"1","key":"10.1016\/j.ress.2019.03.018_bib0018","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1109\/TSMC.2017.2697842","article-title":"Using deep learning-based approach to predict remaining useful life of rotating components","volume":"48","author":"Deutsch","year":"2018","journal-title":"IEEE Trans Syst, Man, Cybern"},{"key":"10.1016\/j.ress.2019.03.018_bib0019","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.ress.2013.02.022","article-title":"Failure diagnosis using deep belief learning based health state classification","volume":"115","author":"Tamilselvan","year":"2013","journal-title":"Reliab Eng & Syst Saf"},{"key":"10.1016\/j.ress.2019.03.018_bib0020","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.ymssp.2016.02.007","article-title":"Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals","volume":"76\u201377","author":"Li","year":"2016","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2019.03.018_bib0021","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2018.01.036","article-title":"Deep diagnostics and prognostics: an integrated hierarchical learning framework in PHM applications","author":"Lin","year":"2018","journal-title":"Appl Soft Comput (2018)"},{"key":"10.1016\/j.ress.2019.03.018_bib0022","doi-asserted-by":"crossref","DOI":"10.1016\/j.jmsy.2018.05.011","article-title":"Long short-term memory for machine remaining life prediction","author":"Zhang","year":"2018","journal-title":"J Manufact Syst (2018)"},{"key":"10.1016\/j.ress.2019.03.018_bib0023","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.neucom.2017.05.063","article-title":"Remaining useful life estimation of engineered systems using vanilla LSTM neural networks","volume":"275","author":"Wu","year":"2018","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.ress.2019.03.018_bib0024","doi-asserted-by":"crossref","DOI":"10.3390\/s17020273","article-title":"Learning to monitor machine health with convolutional bi-directional LSTM networks","volume":"17","author":"Zhao","year":"2017","journal-title":"Sensors (Basel)"},{"key":"10.1016\/j.ress.2019.03.018_bib0025","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1016\/j.ress.2018.11.027","article-title":"Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture","volume":"183","author":"Ellefsen","year":"2019","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2019.03.018_bib0026","article-title":"Remaining useful life prediction of pemfc based on long short-term memory recurrent neural networks","volume":"In Press, Corected Proof","author":"Liu","year":"2018","journal-title":"Int J Hydrogen Energy"},{"key":"10.1016\/j.ress.2019.03.018_bib0027","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.apenergy.2018.09.111","article-title":"Data-driven proton exchange membrane fuel cell degradation predication through deep learning method","volume":"231","author":"Ma","year":"2018","journal-title":"Appl Energy"},{"issue":"28","key":"10.1016\/j.ress.2019.03.018_sbref0028","first-page":"168","article-title":"Post-prognostics decision for optimizing the commitment of fuel cell systems","volume":"49","author":"Chrtien","year":"2016","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.ress.2019.03.018_bib0029","first-page":"1","article-title":"Post-prognostics decision making in distributed mems-based systems","author":"Skima","year":"2017","journal-title":"J Intell Manuf"},{"issue":"1","key":"10.1016\/j.ress.2019.03.018_bib0030","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0377-2217(97)00132-X","article-title":"A state space condition monitoring model for furnace erosion prediction and replacement","volume":"101","author":"Christer","year":"1997","journal-title":"Eur J Oper Res"},{"key":"10.1016\/j.ress.2019.03.018_bib0031","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.ress.2017.08.004","article-title":"Model selection for degradation modeling and prognosis with health monitoring data","volume":"169","author":"Nguyen","year":"2018","journal-title":"Reliability Engineering & System Safety"},{"key":"10.1016\/j.ress.2019.03.018_bib0032","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.ress.2012.11.022","article-title":"Remaining useful life estimation based on stochastic deterioration models: a comparative study","volume":"112","author":"Son","year":"2013","journal-title":"Reliab Eng Syst Saf"},{"issue":"1","key":"10.1016\/j.ress.2019.03.018_bib0033","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1109\/TR.2014.2299155","article-title":"An additive wiener process-based prognostic model for hybrid deteriorating systems","volume":"63","author":"Wang","year":"2014","journal-title":"IEEE Trans Reliab"},{"key":"10.1016\/j.ress.2019.03.018_bib0034","first-page":"1","article-title":"Bayesian based prognostic model for predictive maintenance of offshore wind farms","volume":"10","author":"Asgarpour","year":"2018","journal-title":"Int J Prognostics Health Manage"},{"key":"10.1016\/j.ress.2019.03.018_bib0035","series-title":"2016\u202fIEEE International Conference on Aircraft Utility Systems (AUS)","first-page":"135","article-title":"Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network","author":"Yuan","year":"2016"},{"key":"10.1016\/j.ress.2019.03.018_sbref0036","series-title":"Deep Learning with Python","author":"Chollet","year":"2017"},{"issue":"1","key":"10.1016\/j.ress.2019.03.018_bib0037","article-title":"Analysis and comparison of multiple features for fault detection and prognostic in ball bearings","volume":"4","author":"Nguyen","year":"2018","journal-title":"Proceedings of the European Conference of the PHM Society"},{"key":"10.1016\/j.ress.2019.03.018_bib0038","first-page":"1929","article-title":"Dropout: a simple way to prevent neural networks from overfitting","volume":"15","author":"Srivastava","year":"2014","journal-title":"J Mach Learn Res"},{"key":"10.1016\/j.ress.2019.03.018_sbref0039","article-title":"Adam: a method for stochastic optimization","author":"Kingma","year":"2014","journal-title":"CoRR abs\/14126980"},{"key":"10.1016\/j.ress.2019.03.018_bib0040","first-page":"1","article-title":"New methodology for improving the inspection policies for degradation model selection according to prognostic measures","author":"Nguyen","year":"2018","journal-title":"IEEE Trans Reliab"},{"key":"10.1016\/j.ress.2019.03.018_bib0041","series-title":"Tech. Rep","article-title":"Review and Analysis of Algorithmic Approaches Developed for Prognostics on CMAPSS Dataset","author":"Ramasso","year":"2014"},{"issue":"1","key":"10.1016\/j.ress.2019.03.018_bib0042","first-page":"37","article-title":"Joint prediction of observations and states in time-series based on belief functions","volume":"43","author":"Ramasso","year":"2013","journal-title":"IEEE Trans Syst, Man, Cybern, Part B: Cybernetics"},{"issue":"3","key":"10.1016\/j.ress.2019.03.018_bib0043","doi-asserted-by":"crossref","first-page":"652","DOI":"10.1109\/TASE.2013.2250282","article-title":"A data-level fusion model for developing composite health indices for degradation modeling and prognostic analysis","volume":"10","author":"Liu","year":"2013","journal-title":"IEEE Trans Autom Sci Eng"},{"key":"10.1016\/j.ress.2019.03.018_bib0044","series-title":"Investigating computational geometry for failure prognostics in presence of imprecise health indicator: results and comparisons on C-MAPSS Datasets","first-page":"1","volume":"5","author":"Ramasso","year":"2014"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832018311050?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832018311050?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,5,13]],"date-time":"2019-05-13T02:43:01Z","timestamp":1557715381000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832018311050"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8]]},"references-count":44,"alternative-id":["S0951832018311050"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2019.03.018","relation":{},"ISSN":["0951-8320"],"issn-type":[{"value":"0951-8320","type":"print"}],"subject":[],"published":{"date-parts":[[2019,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new dynamic predictive maintenance framework using deep learning for failure prognostics","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2019.03.018","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}