{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:28:32Z","timestamp":1740112112256,"version":"3.37.3"},"reference-count":53,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,8,1]],"date-time":"2019-08-01T00:00:00Z","timestamp":1564617600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,3,17]],"date-time":"2020-03-17T00:00:00Z","timestamp":1584403200000},"content-version":"am","delay-in-days":229,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["1507198"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2019,8]]},"DOI":"10.1016\/j.ress.2019.03.015","type":"journal-article","created":{"date-parts":[[2019,3,6]],"date-time":"2019-03-06T16:34:53Z","timestamp":1551890093000},"page":"181-194","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["An enhanced copula-based method for data-driven prognostics considering insufficient training units"],"prefix":"10.1016","volume":"188","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6450-238X","authenticated-orcid":false,"given":"Zhimin","family":"Xi","sequence":"first","affiliation":[]},{"given":"Xiangxue","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.ress.2019.03.015_bib0001","doi-asserted-by":"crossref","first-page":"1469","DOI":"10.1016\/S0043-1648(01)00785-2","article-title":"Chemical and microstructural changes induced by friction and wear of brakes","volume":"250\u2013251","author":"\u00d6sterle","year":"2001","journal-title":"Wear"},{"year":"2010","series-title":"An introduction to reliability and maintainability engineering","author":"Ebeling","key":"10.1016\/j.ress.2019.03.015_bib0002"},{"key":"10.1016\/j.ress.2019.03.015_bib0003","series-title":"Bayesian framework for remaining useful life estimation","first-page":"96","author":"Sana","year":"2007"},{"key":"10.1016\/j.ress.2019.03.015_bib0004","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1080\/07408170701730818","article-title":"Sensor-driven prognostics models for equipment replacement and spare parts inventory","volume":"40","author":"Elwany","year":"2008","journal-title":"IIE Trans"},{"key":"10.1016\/j.ress.2019.03.015_bib0005","doi-asserted-by":"crossref","unstructured":"B. Coble and J.W. Hines, Prognostic algorithm categorization with PHM challenge application, In: Proceedings of the international conference on prognostics and health management, Denver 2008, October.","DOI":"10.1109\/PHM.2008.4711456"},{"key":"10.1016\/j.ress.2019.03.015_bib0006","series-title":"Proceedings of the AIAA\/ASME\/ASCE\/AHS\/ASC structures, structural dynamics and materials conference","first-page":"2009","article-title":"A generic bayesian framework for real-time prognostics and health management (PHM)","author":"Wang","year":"2009"},{"key":"10.1016\/j.ress.2019.03.015_bib0007","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1016\/j.ymssp.2012.03.011","article-title":"Combining relevance vector machines and exponential regression for bearing residual life estimation","volume":"31","author":"Di Maio","year":"2012","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2019.03.015_bib0008","doi-asserted-by":"crossref","first-page":"10314","DOI":"10.1016\/j.jpowsour.2011.08.040","article-title":"Prognostics of lithium-ion batteries based on Dempster\u2013Shafer theory and the Bayesian Monte Carlo method","volume":"196","author":"He","year":"2011","journal-title":"J Power Sources"},{"issue":"1","key":"10.1016\/j.ress.2019.03.015_bib0009","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1109\/TIE.2018.2811366","article-title":"Degradation data-driven time-to-failure prognostics approach for rolling element bearings in electrical machines","volume":"66","author":"Wu","year":"2019","journal-title":"IEEE Trans Ind Electron"},{"issue":"1","key":"10.1016\/j.ress.2019.03.015_bib0010","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1109\/TR.2011.2182221","article-title":"Remaining useful life estimation based on a nonlinear diffusion degradation process","volume":"61","author":"Si","year":"2012","journal-title":"IEEE Trans Reliab"},{"key":"10.1016\/j.ress.2019.03.015_bib0011","doi-asserted-by":"crossref","first-page":"5082","DOI":"10.1109\/TIE.2015.2393840","article-title":"An adaptive prognostic approach via nonlinear degradation modeling: application to battery data","volume":"62","author":"Si","year":"2015","journal-title":"IEEE Trans Ind Electron"},{"key":"10.1016\/j.ress.2019.03.015_bib0012","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1016\/j.ymssp.2017.02.027","article-title":"Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries","volume":"93","author":"Wang","year":"2017","journal-title":"Mech Syst Signal Process"},{"issue":"3","key":"10.1016\/j.ress.2019.03.015_bib0013","doi-asserted-by":"crossref","first-page":"1294","DOI":"10.1109\/TR.2018.2831256","article-title":"A hybrid approach to cutting tool remaining useful life prediction based on the wiener process","volume":"67","author":"Sun","year":"2018","journal-title":"IEEE Trans Reliab"},{"issue":"6","key":"10.1016\/j.ress.2019.03.015_bib0014","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1016\/j.microrel.2013.03.010","article-title":"Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression","volume":"53","author":"Liu","year":"2013","journal-title":"Microelectron Reliab"},{"issue":"5\u20138","key":"10.1016\/j.ress.2019.03.015_bib0015","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1007\/s00170-011-3536-7","article-title":"CHMM for tool condition monitoring and remaining useful life prediction","volume":"59","author":"Wang","year":"2012","journal-title":"Int J Adv Manuf Technol"},{"issue":"1","key":"10.1016\/j.ress.2019.03.015_bib0016","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1109\/TSMCC.2008.2006988","article-title":"Detection and prognostics on low-dimensional systems","volume":"39","author":"Srivastava","year":"2009","journal-title":"IEEE Trans Syst Man Cybern Part C: Appl Rev"},{"issue":"9","key":"10.1016\/j.ress.2019.03.015_bib0017","doi-asserted-by":"crossref","first-page":"11763","DOI":"10.1016\/j.eswa.2011.03.063","article-title":"Intelligent prognostics for battery health monitoring based on sample entropy","volume":"38","author":"Widodo","year":"2011","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.ress.2019.03.015_bib0018","doi-asserted-by":"crossref","first-page":"680","DOI":"10.1016\/j.jpowsour.2012.11.146","article-title":"Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods","volume":"239","author":"Nuhic","year":"2013","journal-title":"J Power Sources"},{"issue":"7","key":"10.1016\/j.ress.2019.03.015_bib0019","doi-asserted-by":"crossref","first-page":"8430","DOI":"10.1016\/j.eswa.2011.01.038","article-title":"Machine health prognostics using survival probability and support vector machine","volume":"38","author":"Widodo","year":"2011","journal-title":"Expert Syst Appl"},{"issue":"1","key":"10.1016\/j.ress.2019.03.015_bib0020","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.ymssp.2005.11.008","article-title":"Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods","volume":"21","author":"Huang","year":"2007","journal-title":"Mech Syst Signal Process"},{"issue":"3","key":"10.1016\/j.ress.2019.03.015_bib0021","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1115\/1.2893988","article-title":"Prediction of machine deterioration using vibration based fault trends and recurrent neural networks","volume":"121","author":"Tse","year":"1999","journal-title":"J Vib Acoust Trans ASME"},{"issue":"1","key":"10.1016\/j.ress.2019.03.015_bib0022","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1109\/TASE.2007.910302","article-title":"A neural network degradation model for computing and updating residual life distributions","volume":"5","author":"Gebraeel","year":"2008","journal-title":"IEEE Trans Autom Sci Eng"},{"key":"10.1016\/j.ress.2019.03.015_bib0023","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1016\/j.ress.2019.01.006","article-title":"Gated recurrent unit based recurrent neural network for remaining useful life prediction of nonlinear deterioration process","volume":"185","author":"Chen","year":"2019","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2019.03.015_bib0024","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.ress.2018.11.011","article-title":"Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction","volume":"182","author":"Li","year":"2019","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2019.03.015_bib0025","doi-asserted-by":"crossref","unstructured":"T. Wang, J. Yu, D. Siegel and J. Lee, A similarity-based prognostics approach for remaining useful life estimation of engineered systems, In: Proceedings of the IEEE, international conference on prognostics and health management, 2008, Oct, 6\u20139.","DOI":"10.1109\/PHM.2008.4711421"},{"issue":"1","key":"10.1016\/j.ress.2019.03.015_bib0026","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.ress.2009.08.001","article-title":"A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system","volume":"95","author":"Zio","year":"2010","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2019.03.015_bib0027","first-page":"3654","article-title":"Similarity based modeling of time synchronous averaged vibration signals for machinery health monitoring","volume":"6","author":"Wegerich","year":"2004","journal-title":"IEEE Aerosp Conf Proc"},{"issue":"7","key":"10.1016\/j.ress.2019.03.015_bib0028","doi-asserted-by":"crossref","first-page":"5872","DOI":"10.1109\/TIE.2017.2777383","article-title":"Assessment of data suitability for machine prognosis using maximum mean discrepancy","volume":"65","author":"Jia","year":"2018","journal-title":"IEEE Trans Ind Electron"},{"issue":"2","key":"10.1016\/j.ress.2019.03.015_bib0029","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1109\/TIM.2008.2005965","article-title":"Prognostics methods for battery health monitoring using a Bayesian framework","volume":"58","author":"Saha","year":"2009","journal-title":"IEEE Trans Instrum Meas"},{"issue":"9","key":"10.1016\/j.ress.2019.03.015_bib0030","doi-asserted-by":"crossref","first-page":"4353","DOI":"10.1109\/TIE.2010.2098369","article-title":"Machine condition prediction based on adaptive neuro-fuzzy and high-order particle filtering","volume":"58","author":"Chen","year":"2011","journal-title":"IEEE Trans Ind Electron"},{"key":"10.1016\/j.ress.2019.03.015_bib0031","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.ress.2013.02.019","article-title":"A tutorial for particle filter-based prognostics algorithm using Matlab","volume":"115","author":"An","year":"2013","journal-title":"Reliab Eng Syst Saf"},{"issue":"7","key":"10.1016\/j.ress.2019.03.015_bib0032","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1088\/0964-1726\/20\/7\/075021","article-title":"A regularized auxiliary particle filtering approach for system state estimation and battery life prediction","volume":"20","author":"Liu","year":"2011","journal-title":"Smart Mater Struct"},{"key":"10.1016\/j.ress.2019.03.015_bib0033","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.ymssp.2015.11.008","article-title":"Review, discussion and perspectives","volume":"72\u201373","author":"Jouin","year":"2016","journal-title":"Mech Syst Signal Process"},{"key":"10.1016\/j.ress.2019.03.015_bib0034","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.ress.2018.01.017","article-title":"Remaining useful life estimation in aeronautics: combining data-driven and Kalman filtering","volume":"184","author":"Baptista","year":"2019","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2019.03.015_bib0035","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.ress.2017.11.020","article-title":"Bayesian hierarchical model-based prognostics for lithium-ion batteries","volume":"172","author":"Mishra","year":"2018","journal-title":"Reliab Eng Syst Saf"},{"issue":"4","key":"10.1016\/j.ress.2019.03.015_bib0036","doi-asserted-by":"crossref","first-page":"3227","DOI":"10.1109\/TIE.2018.2842782","article-title":"A battery management system with a lebesgue-sampling-based extended Kalman filter","volume":"66","author":"Yan","year":"2019","journal-title":"IEEE Trans Ind Electron"},{"key":"10.1016\/j.ress.2019.03.015_bib0037","doi-asserted-by":"crossref","unstructured":"L. Peel, Data driven prognostics using a Kalman filter ensemble of neural network models. In: Proceedings of the IEEE, international conference on prognostics and health management, 2008, Oct, 6\u20139.","DOI":"10.1109\/PHM.2008.4711423"},{"key":"10.1016\/j.ress.2019.03.015_bib0038","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.ress.2012.03.008","article-title":"Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life","volume":"103","author":"Hu","year":"2012","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2019.03.015_bib0039","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/j.ymssp.2018.09.033","article-title":"Abrupt fault remaining useful life estimation using measurements from a reciprocating compressor valve failure","volume":"121","author":"Loukopoulos","year":"2019","journal-title":"Mech Syst Signal Process"},{"issue":"4","key":"10.1016\/j.ress.2019.03.015_bib0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1115\/1.4041674","article-title":"Degradation modeling and remaining useful life prediction of aircraft engines using ensemble learning","volume":"141","author":"Li","year":"2019","journal-title":"J Eng Gas Turbines Power"},{"key":"10.1016\/j.ress.2019.03.015_bib0041","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.ress.2017.12.016","article-title":"An ensemble learning-based prognostic approach with degradation-dependent weights for remaining useful life prediction","volume":"184","author":"Li","year":"2019","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2019.03.015_bib0042","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.ress.2014.06.014","article-title":"A Copula-based sampling method for data-driven prognostics","volume":"132","author":"Xi","year":"2014","journal-title":"Reliab Eng Syst Saf"},{"issue":"2","key":"10.1016\/j.ress.2019.03.015_bib0043","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1016\/j.csda.2005.08.010","article-title":"Bayesian copula selection","volume":"51","author":"Huard","year":"2006","journal-title":"Comput Stat Data Anal"},{"year":"2003","series-title":"Probability theory: the logic of science","author":"Jaynes","key":"10.1016\/j.ress.2019.03.015_bib0044"},{"year":"2006","series-title":"Pair-copula constructions of multiple dependence","author":"Aas","key":"10.1016\/j.ress.2019.03.015_bib0045"},{"key":"10.1016\/j.ress.2019.03.015_bib0046","unstructured":"D. Schirmacher, E. Schirmacher, Multivariate dependence modeling using pair-copulas, Technical report, Society of Acturaries: 2008 Enterprise Risk Management Symposium, April 14\u201316, Chicago."},{"key":"10.1016\/j.ress.2019.03.015_bib0047","first-page":"229","volume":"8","author":"Sklar","year":"1959"},{"issue":"11","key":"10.1016\/j.ress.2019.03.015_bib0048","doi-asserted-by":"crossref","first-page":"1110081","DOI":"10.1115\/1.4000251","article-title":"Bayesian reliability analysis with evolving, insufficient, and subjective data sets","volume":"131","author":"Wang","year":"2009","journal-title":"J Mech Des Trans ASME"},{"key":"10.1016\/j.ress.2019.03.015_bib0049","series-title":"Advances in battery manufacturing, Service, and Management Systems","article-title":"Prognostic classification problem in battery health management,","author":"Son","year":"2016"},{"issue":"2","key":"10.1016\/j.ress.2019.03.015_bib0050","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1109\/78.978374","article-title":"A tutorial on particle filters for online nonlinear\/non-Gaussian Bayesian tracking","volume":"50","author":"Arulampalam","year":"2002","journal-title":"IEEE Trans Signal Process"},{"key":"10.1016\/j.ress.2019.03.015_bib0051","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.jpowsour.2015.01.164","article-title":"A Bayesian approach for Li-Ion battery capacity fade modeling and cycles to failure prognostics","volume":"281","author":"Guo","year":"2015","journal-title":"J Power Sources"},{"key":"10.1016\/j.ress.2019.03.015_bib0052","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1016\/j.jpowsour.2018.11.072","article-title":"A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction","author":"Guo","year":"2019","journal-title":"J Power Sources"},{"key":"10.1016\/j.ress.2019.03.015_bib0053","unstructured":"http:\/\/ti.arc.nasa.gov\/tech\/dash\/pcoe\/prognostic-data-repository\/."}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832018310536?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832018310536?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,19]],"date-time":"2021-04-19T10:06:51Z","timestamp":1618826811000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832018310536"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8]]},"references-count":53,"alternative-id":["S0951832018310536"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2019.03.015","relation":{},"ISSN":["0951-8320"],"issn-type":[{"type":"print","value":"0951-8320"}],"subject":[],"published":{"date-parts":[[2019,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An enhanced copula-based method for data-driven prognostics considering insufficient training units","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2019.03.015","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}