{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,8]],"date-time":"2025-04-08T06:03:53Z","timestamp":1744092233514},"reference-count":132,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2015,1,1]],"date-time":"2015-01-01T00:00:00Z","timestamp":1420070400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"the International Collaborative R&D Program","award":["0420-2011-0161"]},{"name":"the Korea Institute of Energy Technology Evaluation and Planning (KETEP)"},{"name":"the Korean government\u2019s Ministry of Knowledge Economy"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Reliability Engineering & System Safety"],"published-print":{"date-parts":[[2015,1]]},"DOI":"10.1016\/j.ress.2014.09.014","type":"journal-article","created":{"date-parts":[[2014,9,22]],"date-time":"2014-09-22T00:38:21Z","timestamp":1411346301000},"page":"223-236","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":348,"special_numbering":"C","title":["Practical options for selecting data-driven or physics-based prognostics algorithms with reviews"],"prefix":"10.1016","volume":"133","author":[{"given":"Dawn","family":"An","sequence":"first","affiliation":[]},{"given":"Nam H.","family":"Kim","sequence":"additional","affiliation":[]},{"given":"Joo-Ho","family":"Choi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"7","key":"10.1016\/j.ress.2014.09.014_bib1","doi-asserted-by":"crossref","first-page":"1483","DOI":"10.1016\/j.ymssp.2005.09.012","article-title":"A review on machinery diagnostics and prognostics implementing condition-based maintenance","volume":"20","author":"Jardine","year":"2006","journal-title":"Mech Syst Sig Process"},{"issue":"4","key":"10.1016\/j.ress.2014.09.014_bib2","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1016\/0890-6955(94)90083-3","article-title":"A review by discussion of condition monitoring and fault diagnosis in machine tools","volume":"34","author":"Martin","year":"1994","journal-title":"Int J Mach Tools Manuf"},{"issue":"1\u20132","key":"10.1016\/j.ress.2014.09.014_bib3","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1016\/j.jsv.2004.02.058","article-title":"A review of vibration-based techniques for helicopter transmission diagnostics","volume":"282","author":"Samuel","year":"2005","journal-title":"J Sound Vib"},{"key":"10.1016\/j.ress.2014.09.014_bib4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.renene.2013.06.025","article-title":"Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine","volume":"62","author":"Tang","year":"2014","journal-title":"Renewable Energy"},{"key":"10.1016\/j.ress.2014.09.014_bib5","article-title":"Applications of laser diagnostics to thermal power plants and engines","volume":"6","author":"Deguchi","year":"2014","journal-title":"Appl Therm Eng"},{"key":"10.1016\/j.ress.2014.09.014_bib6","doi-asserted-by":"crossref","first-page":"3090","DOI":"10.1016\/j.eswa.2007.06.029","article-title":"Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine","volume":"34","author":"Sugumaran","year":"2008","journal-title":"Expert Syst Appl"},{"key":"10.1016\/j.ress.2014.09.014_bib7","doi-asserted-by":"crossref","first-page":"824","DOI":"10.1016\/j.ymssp.2006.02.009","article-title":"Approximate entropy as a diagnostic tool for machine health monitoring","volume":"21","author":"Yan","year":"2007","journal-title":"Mech Syst Sig Process"},{"key":"10.1016\/j.ress.2014.09.014_bib8","doi-asserted-by":"crossref","unstructured":"Kunli M, Yunxin W. Fault diagnosis of rolling element bearing based on vibration frequency analysis. In: Proceedings of the third international conference on measuring technology and mechatronics automation, Shangshai, China; January 6\u20137, 2011.","DOI":"10.1109\/ICMTMA.2011.337"},{"key":"10.1016\/j.ress.2014.09.014_bib9","doi-asserted-by":"crossref","first-page":"2169","DOI":"10.1016\/j.ymssp.2011.01.007","article-title":"Improvement of damage detection methods based on experimental modal parameters","volume":"25","author":"Radzie\u0144ski","year":"2011","journal-title":"Mech Syst Sig Process"},{"issue":"2","key":"10.1016\/j.ress.2014.09.014_bib10","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1109\/MIM.2013.6495676","article-title":"Ball bearing damage detection using traditional signal processing algorithms","volume":"16","author":"Bediaga","year":"2013","journal-title":"IEEE Instrum Meas Mag"},{"issue":"2","key":"10.1016\/j.ress.2014.09.014_bib11","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/S0951-8320(01)00148-X","article-title":"A condition-based maintenance policy for stochastically deteriorating systems","volume":"76","author":"Grall","year":"2002","journal-title":"Reliab EngSyst Saf"},{"issue":"4","key":"10.1016\/j.ress.2014.09.014_bib12","first-page":"422","article-title":"Condition-based maintenance for continuously monitored degrading systems with multiple failure modes","volume":"45","author":"Liu","year":"2013","journal-title":"Qual Reliab Eng"},{"key":"10.1016\/j.ress.2014.09.014_bib13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ejor.2010.11.018","article-title":"Remaining useful life estimation\u2014a review on the statistical data driven approaches","volume":"213","author":"Si","year":"2011","journal-title":"Eur J Oper Res"},{"issue":"1\u20132","key":"10.1016\/j.ress.2014.09.014_bib14","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1016\/j.ymssp.2013.06.004","article-title":"Prognostics and health management design for rotary machinery systems\u2014reviews, methodology and applications","volume":"42","author":"Lee","year":"2014","journal-title":"Mech Syst Sig Process"},{"issue":"3\u20134","key":"10.1016\/j.ress.2014.09.014_bib15","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1177\/0142331208092030","article-title":"Comparison of prognostic algorithms for estimating remaining useful life of batteries","volume":"31","author":"Saha","year":"2009","journal-title":"Trans Inst Meas Control"},{"key":"10.1016\/j.ress.2014.09.014_bib16","unstructured":"Xing, Y, Williard, N, Tsui, K-L, Pecht, M., A comparative review of prognostics-based reliability methods for lithium batteries. In: Prognostics and system health management conference, Shenzhen, China; May 24\u201325, 2011."},{"key":"10.1016\/j.ress.2014.09.014_bib17","doi-asserted-by":"crossref","first-page":"6007","DOI":"10.1016\/j.jpowsour.2011.03.101","article-title":"A review on prognostics and health monitoring of Li-ion battery","volume":"196","author":"Zhang","year":"2011","journal-title":"J Power Sources"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib18","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1109\/TR.2014.2299152","article-title":"Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction","volume":"63","author":"Liao","year":"2014","journal-title":"IEEE Trans Reliab"},{"issue":"3","key":"10.1016\/j.ress.2014.09.014_bib19","doi-asserted-by":"crossref","first-page":"428","DOI":"10.3969\/j.issn.1004-4132.2011.03.010","article-title":"Health management based on fusion prognostics for avionics systems","volume":"22","author":"Xu","year":"2011","journal-title":"J Syst Eng Electron"},{"key":"10.1016\/j.ress.2014.09.014_bib20","unstructured":"Xing, Y, Miao, Q, Tsui, K-L, Pecht, M., Prognostics and health monitoring for lithium-ion battery. 2011 In: IEEE international conference, pp. 242\u2013247."},{"key":"10.1016\/j.ress.2014.09.014_bib21","doi-asserted-by":"crossref","first-page":"961","DOI":"10.1016\/S0893-6080(05)80092-9","article-title":"Forecasting the behavior of multivariate time series using neural networks","volume":"5","author":"Chakraborty","year":"1992","journal-title":"Neural Networks"},{"key":"10.1016\/j.ress.2014.09.014_bib22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.mineng.2013.05.026","article-title":"Remaining useful life prediction of grinding mill liners using an artificial neural network","volume":"53","author":"Ahmadzadeh","year":"2013","journal-title":"Miner Eng"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib23","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.asoc.2012.08.031","article-title":"Enhanced fuzzy-filtered neural networks for material fatigue prognosis","volume":"13","author":"Li","year":"2013","journal-title":"Appl Soft Comput"},{"key":"10.1016\/j.ress.2014.09.014_bib24","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.ress.2009.08.001","article-title":"A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system","volume":"95","author":"Zio","year":"2010","journal-title":"Reliab Eng Syst SafReliab EngSyst Saf"},{"issue":"21","key":"10.1016\/j.ress.2014.09.014_bib25","doi-asserted-by":"crossref","first-page":"11128","DOI":"10.1016\/j.ijhydene.2014.05.005","article-title":"Proton exchange membrane fuel cell degradation prediction based on adaptive neuro-fuzzy inference systems","volume":"39","author":"Silva","year":"2014","journal-title":"Int J Hydrogen Energy"},{"key":"10.1016\/j.ress.2014.09.014_bib26","unstructured":"Wilson AG, Adams RP. Gaussian process covariance kernels for pattern discovery and extrapolation. arXiv preprint arXiv:1302.4245; 2013. URL: \u3008http:\/\/arxiv.org\/pdf\/1302.4245v3.pdf\u3009."},{"issue":"2","key":"10.1016\/j.ress.2014.09.014_bib27","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1142\/S0129065704001899","article-title":"Gaussian processes for machine learning","volume":"14","author":"Seeger","year":"2004","journal-title":"Int J Neural Syst"},{"key":"10.1016\/j.ress.2014.09.014_bib28","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1016\/j.rser.2013.07.026","article-title":"Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine","volume":"27","author":"Yan","year":"2013","journal-title":"Renewable Sustainable Energy Rev"},{"key":"10.1016\/j.ress.2014.09.014_bib29","article-title":"Health assessment and life prediction of cutting tools based on support vector regression","volume":"19","author":"Benkedjouh","year":"2013","journal-title":"J Intell Manuf"},{"issue":"12","key":"10.1016\/j.ress.2014.09.014_bib30","doi-asserted-by":"crossref","first-page":"2818","DOI":"10.2514\/1.J051268","article-title":"Uncertainty identification of damage growth parameters using nonlinear regression","volume":"49","author":"Coppe","year":"2011","journal-title":"AIAA J"},{"key":"10.1016\/j.ress.2014.09.014_bib31","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/00949655.2013.848452","article-title":"Residual life estimation based on bivariate non-stationary gamma degradation process","author":"Wang","year":"2013","journal-title":"J Stat Comput Simul"},{"issue":"1\u20132","key":"10.1016\/j.ress.2014.09.014_bib32","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.ymssp.2012.08.016","article-title":"A wiener process-based degradation model with a recursive filter algorithm for remaining useful life estimation","volume":"35","author":"Si","year":"2013","journal-title":"Mech Syst Sig Process"},{"key":"10.1016\/j.ress.2014.09.014_bib33","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.ymssp.2012.05.004","article-title":"A novel method for online health prognosis of equipment based on hidden semi-Markov model using sequential Monte Carlo methods","volume":"32","author":"Liu","year":"2012","journal-title":"Mech Syst Sig Process"},{"key":"10.1016\/j.ress.2014.09.014_bib34","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/S0169-7439(97)00061-0","article-title":"Introduction to multi-layer feed-forward neural networks","volume":"39","author":"Svozil","year":"1997","journal-title":"Chemom Intell Lab Syst"},{"key":"10.1016\/j.ress.2014.09.014_bib35","first-page":"163","article-title":"Survey of neural transfer functions","volume":"2","author":"Duch","year":"1999","journal-title":"Neural Comput Surv"},{"key":"10.1016\/j.ress.2014.09.014_bib36","doi-asserted-by":"crossref","unstructured":"Liu, J, Saxena, A, Goebel, K, Saha, B, Wang, W, An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. In: Annual conference of the prognostics and health management society, Portland, Oregon; October 10\u201316, 2010.","DOI":"10.36001\/phmconf.2010.v2i1.1896"},{"key":"10.1016\/j.ress.2014.09.014_bib37","doi-asserted-by":"crossref","first-page":"1195","DOI":"10.1046\/j.1365-8711.2003.06271.x","article-title":"Estimating photometric redshifts with artificial neural networks","volume":"339","author":"Firth","year":"2003","journal-title":"Mon Not R Astron Soc"},{"key":"10.1016\/j.ress.2014.09.014_bib38","first-page":"318","article-title":"Learning internal representations by error propagation","volume":"vol. 1","author":"Rumelhart","year":"1986"},{"key":"10.1016\/j.ress.2014.09.014_bib39","article-title":"A guide to recurrent neural networks and backpropagation. In: The DALLAS project. Report from the NUTEK-supported project AIS-8: application of data analysis with learning systems, 1999\u20132001","author":"Bod\u00e9n","year":"2002"},{"key":"10.1016\/j.ress.2014.09.014_bib40","unstructured":"Wilamowski, BM, Iplikci, S, Kaynak, O, Efe, M\u00d6., An algorithm for fast convergence in training neural networks. In: Proceedings of the international joint conference on neural networks, Vol. 3; 2001. pp. 1778\u20131782."},{"key":"10.1016\/j.ress.2014.09.014_bib41","series-title":"Fuzzy neural network theory and application","author":"Liu","year":"2004"},{"issue":"4","key":"10.1016\/j.ress.2014.09.014_bib42","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1049\/ip-cds:20040495","article-title":"Wavelet neural network approach for fault diagnosis of analogue circuits","volume":"151","author":"He","year":"2004","journal-title":"IEEE Proc Circuits Devices Syst"},{"key":"10.1016\/j.ress.2014.09.014_bib43","unstructured":"Bicciato, S, Pandin, M, Didon\u00e8, G, Bello, CD., Analysis of an associative memory neural network for pattern identification in gene expression data. In: Biokdd01, workshop on data mining in bioinformatics, pp. 22\u201330."},{"key":"10.1016\/j.ress.2014.09.014_bib44","doi-asserted-by":"crossref","first-page":"985","DOI":"10.1016\/S0893-6080(05)80155-8","article-title":"The design and evolution of modular neural network architectures","volume":"7","author":"Happel","year":"1994","journal-title":"Neural Networks"},{"key":"10.1016\/j.ress.2014.09.014_bib45","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/j.procs.2013.05.057","article-title":"Toward a hybrid approach of primitive cognitive network process and particle swarm optimization neural network for forecasting","volume":"17","author":"Zhang","year":"2013","journal-title":"Procedia Comput Sci"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib46","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1109\/TSMCB.2003.811293","article-title":"A hybrid neural network\/genetic algorithm approach to optimizing feature extraction for signal classification","volume":"34","author":"Rovithakis","year":"2004","journal-title":"IEEE Trans Syst Man Cybern Part B Cybern"},{"key":"10.1016\/j.ress.2014.09.014_bib47","unstructured":"Lawrence, S, Giles, CL, Tsoi, AC., What size neural network gives optimal generalization? Convergence properties of backpropagation technical reports, UM computer science department, UMIACS; Octobor 15, 1998."},{"key":"10.1016\/j.ress.2014.09.014_bib48","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1007\/s11063-009-9108-2","article-title":"Neural network architecture selection: can function complexity help?","volume":"30","author":"G\u00f3mez","year":"2009","journal-title":"Neural Proc Lett"},{"key":"10.1016\/j.ress.2014.09.014_bib49","doi-asserted-by":"crossref","DOI":"10.1155\/2013\/425740","article-title":"Review on methods to fix number of hidden neurons in neural networks","volume":"2013","author":"Sheela","year":"2013","journal-title":"Math Prob Eng"},{"key":"10.1016\/j.ress.2014.09.014_bib50","unstructured":"Ostafe, D, Neural network hidden layer number determination using pattern recognition techniques. In: Second Romanian-Hungarian joint symposium on applied computational intelligence, Timisoara, Romania; 2005."},{"issue":"12","key":"10.1016\/j.ress.2014.09.014_bib51","first-page":"6837","article-title":"Particle swarm optimization based on back propagation network forecasting exchange rates","volume":"7","author":"Chang","year":"2011","journal-title":"Int J Innovative Comput Inf Control"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib52","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/j.renene.2011.06.023","article-title":"Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model","volume":"37","author":"Guo","year":"2012","journal-title":"Renewable Energy"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib53","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.hbrcj.2013.04.001","article-title":"Developing an artificial neural network model to evaluate chloride diffusivity in high performance concrete","volume":"9","author":"Hodhod","year":"2013","journal-title":"HBRC J"},{"key":"10.1016\/j.ress.2014.09.014_bib54","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.apenergy.2014.01.066","article-title":"A new neural network model for the state-of-charge estimation in the battery degradation process","volume":"121","author":"Kang","year":"2014","journal-title":"Appl Energy"},{"issue":"4","key":"10.1016\/j.ress.2014.09.014_bib55","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1016\/0893-6080(95)00144-1","article-title":"Accelerating backpropagation through dynamic self-adaptation","volume":"9","author":"Salomon","year":"1996","journal-title":"Neural Networks"},{"key":"10.1016\/j.ress.2014.09.014_bib56","doi-asserted-by":"crossref","unstructured":"Chen, SC, Lin, SW, Tseng, TY, Lin, HC, Optimization of back-propagation network using simulated annealing approach. In: IEEE international conference on systems, man, and cybernetics, Taipei, Taiwan; October 8\u201311, 2006.","DOI":"10.1109\/ICSMC.2006.385301"},{"key":"10.1016\/j.ress.2014.09.014_bib57","doi-asserted-by":"crossref","unstructured":"Subudhi, B, Jena, D, Gupta, MM, Memetic differential evolution trained neural networks for nonlinear system identification. In: IEEE region 10 colloquium and the third international conference on industrial and information systems, Kharagpur, India; December 8\u201310, 2008.","DOI":"10.1109\/ICIINFS.2008.4798417"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib58","first-page":"46","article-title":"An improved conjugate gradient based learning algorithm for back propagation neural networks","volume":"4","author":"Nawi","year":"2008","journal-title":"Int J Comput Intell"},{"key":"10.1016\/j.ress.2014.09.014_bib59","doi-asserted-by":"crossref","first-page":"498","DOI":"10.1016\/j.neucom.2013.05.024","article-title":"Comparison of a genetic algorithm and simulated annealing for automatic neural network ensemble development","volume":"121","author":"Soares","year":"2013","journal-title":"Neurocomputing"},{"issue":"5","key":"10.1016\/j.ress.2014.09.014_bib60","doi-asserted-by":"crossref","first-page":"867","DOI":"10.1162\/neco.1995.7.5.867","article-title":"Methods for combining experts\u2019 probability assessments","volume":"7","author":"Jacobs","year":"1995","journal-title":"Neural Comput"},{"issue":"6","key":"10.1016\/j.ress.2014.09.014_bib61","doi-asserted-by":"crossref","first-page":"1289","DOI":"10.1162\/neco.1994.6.6.1289","article-title":"Boosting and other ensemble methods","volume":"6","author":"Drucker","year":"1994","journal-title":"Neural Comput"},{"key":"10.1016\/j.ress.2014.09.014_bib62","first-page":"231","article-title":"Neural network ensembles, cross validation, and active learning","volume":"vol. 7","author":"Krogh","year":"1995"},{"key":"10.1016\/j.ress.2014.09.014_bib63","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1016\/j.engappai.2014.02.009","article-title":"Neural network ensembles based on copula methods and distributed multiobjective central force optimization algorithm","volume":"32","author":"Chao","year":"2014","journal-title":"Eng Appl Artif Intell"},{"issue":"3","key":"10.1016\/j.ress.2014.09.014_bib64","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1088\/0954-898X\/8\/3\/004","article-title":"Optimal ensemble averaging of neural networks","volume":"8","author":"Naftaly","year":"1997","journal-title":"Network Comput Neural Syst"},{"key":"10.1016\/j.ress.2014.09.014_bib65","unstructured":"Neal, RM., Bayesian learning for neural networks PhD thesis, University of Toronto, Ontario, Canada, 1995."},{"key":"10.1016\/j.ress.2014.09.014_bib66","unstructured":"Freitas, de JFG., \u201cBayesian methods for neural networks.\u201d PhD thesis. University of Cambridge, UK, 2003."},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib67","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1109\/72.478409","article-title":"Confidence interval prediction for neural network models","volume":"7","author":"Chryssoloiuris","year":"1996","journal-title":"IEEE Tran Neural Networks"},{"issue":"4","key":"10.1016\/j.ress.2014.09.014_bib68","doi-asserted-by":"crossref","first-page":"273","DOI":"10.2307\/1270528","article-title":"Prediction intervals for neural networks via nonlinear regression","volume":"40","author":"Veaux","year":"1998","journal-title":"Technometrics"},{"issue":"4\u20135","key":"10.1016\/j.ress.2014.09.014_bib69","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/S0893-6080(99)00080-5","article-title":"Construction of confidence intervals for neural networks based on least squares estimation","volume":"13","author":"Rivals","year":"2000","journal-title":"Neural Networks"},{"key":"10.1016\/j.ress.2014.09.014_bib70","unstructured":"Yang, L, Kavli, T, Carlin, M, Clausen, S, Groot, PFM., An evaluation of confidence bound estimation methods for neural networks. In: European symposium on intelligent techniques; 2000, Aachen, Germany, September 14\u201315, 2000."},{"key":"10.1016\/j.ress.2014.09.014_bib71","series-title":"An introduction to the bootstrap","author":"Efron","year":"1994"},{"key":"10.1016\/j.ress.2014.09.014_bib72","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.apenergy.2013.05.075","article-title":"Quantifying uncertainties of neural network-based electricity price forecasts","volume":"112","author":"Khosravi","year":"2013","journal-title":"Appl Energy"},{"key":"10.1016\/j.ress.2014.09.014_bib73","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/0893-6080(90)90049-Q","article-title":"Probabilistic neural networks","volume":"3","author":"Specht","year":"1990","journal-title":"Neural Networks"},{"issue":"3","key":"10.1016\/j.ress.2014.09.014_bib74","doi-asserted-by":"crossref","first-page":"1065","DOI":"10.1214\/aoms\/1177704472","article-title":"On estimation of a probability density function and mode","volume":"33","author":"Parzen","year":"1962","journal-title":"Ann Math Stat"},{"key":"10.1016\/j.ress.2014.09.014_bib75","doi-asserted-by":"crossref","unstructured":"Giurgiutiu V., Current issues in vibration-based fault diagnostics and prognostics. In: SPIE\u2019s ninth annual international symposium on smart structures and materials and seventh annual international symposium on NDE for health monitoring and diagnostics, San Diego, CA; March 17\u201321, 2002.","DOI":"10.1117\/12.469869"},{"issue":"4","key":"10.1016\/j.ress.2014.09.014_bib76","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1109\/72.857781","article-title":"Probabilistic neural-network structure determination for pattern classification","volume":"11","author":"Mao","year":"2000","journal-title":"IEEE Tran Neural Networks"},{"key":"10.1016\/j.ress.2014.09.014_bib77","doi-asserted-by":"crossref","unstructured":"Khawaja, T, Vachtsevanos, G, Wu, B., Reasoning about uncertainty in prognosis: a confidence prediction neural network approach, 2005. In: Annual meeting of the north American Fuzzy Information Processing Society, Ann Arbor, MI; June 22\u201325, 2005.","DOI":"10.1109\/NAFIPS.2005.1548498"},{"issue":"9","key":"10.1016\/j.ress.2014.09.014_bib78","doi-asserted-by":"crossref","first-page":"1341","DOI":"10.1109\/TNN.2011.2162110","article-title":"Comprehensive review of neural network-based prediction intervals and new advances","volume":"22","author":"Khosravi","year":"2011","journal-title":"IEEE Tran Neural Networks"},{"key":"10.1016\/j.ress.2014.09.014_bib79","series-title":"Bayesian data analysis","author":"Gelman","year":"2004"},{"key":"10.1016\/j.ress.2014.09.014_bib80","series-title":"The design and analysis of computer experiments","author":"Santner","year":"2003"},{"key":"10.1016\/j.ress.2014.09.014_bib81","series-title":"Gaussian processes for machine learning","author":"Rasmussen","year":"2006"},{"key":"10.1016\/j.ress.2014.09.014_bib82","article-title":"Computing with infinite networks","volume":"vol. 9","author":"Williams","year":"1997"},{"key":"10.1016\/j.ress.2014.09.014_bib83","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1177\/1045389X08099602","article-title":"Gaussian process time series model for life prognosis of metallic structures","volume":"20","author":"Mohanty","year":"2009","journal-title":"J Intell Mater Syst Struct"},{"key":"10.1016\/j.ress.2014.09.014_bib84","article-title":"Nonstationary covariance functions for Gaussian process regression","volume":"vol. 16","author":"Paciorek","year":"2004"},{"key":"10.1016\/j.ress.2014.09.014_bib85","doi-asserted-by":"crossref","first-page":"705","DOI":"10.1016\/j.csda.2004.02.006","article-title":"Gaussian process for nonstationary time series prediction","volume":"47","author":"Belhouari","year":"2004","journal-title":"Comput Stat Data Anal"},{"key":"10.1016\/j.ress.2014.09.014_bib86","unstructured":"Liu, D, Pang, J, Zhou, J, Peng, Y., Data-driven prognostics for lithium-ion battery based on Gaussian process regression, 2012. In: Prognostics and system health management conference, Beijing, China; May 23\u201325, 2012."},{"issue":"4","key":"10.1016\/j.ress.2014.09.014_bib87","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1214\/ss\/1177012413","article-title":"Design and analysis of computer experiments","volume":"4","author":"Sacks","year":"1989","journal-title":"Stat Sci"},{"key":"10.1016\/j.ress.2014.09.014_bib88","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1007\/s00158-012-0776-6","article-title":"Efficient reliability analysis based on Bayesian framework under input variable and metamodel uncertainties","volume":"46","author":"An","year":"2012","journal-title":"Struct Multi Optim"},{"key":"10.1016\/j.ress.2014.09.014_bib89","first-page":"475","article-title":"Regression and classification using Gaussian process priors","volume":"vol. 6","author":"Neal","year":"1998"},{"key":"10.1016\/j.ress.2014.09.014_bib90","unstructured":"MacKay, DJC., Gaussian processes-a replacement for supervised neural networks? Tutorial lecture notes for NIPS, UK, \u3008http:\/\/www.inference.phy.cam.ac.uk\/mackay\/BayesGP.html\u3009; 1997."},{"key":"10.1016\/j.ress.2014.09.014_bib91","first-page":"625","article-title":"Fast sparse Gaussian process methods: the information vector machine","volume":"vol. 15","author":"Lawrence","year":"2003"},{"key":"10.1016\/j.ress.2014.09.014_bib92","first-page":"857","article-title":"Stable and efficient Gaussian process calculations","volume":"10","author":"Foster","year":"2009","journal-title":"J Mach Learn Res"},{"key":"10.1016\/j.ress.2014.09.014_bib93","unstructured":"Melkumyan, A, Ramos, F., \u201cA sparse covariance function for exact Gaussian process inference in large datasets. In: IJCAI 2009, proceedings of the 21st International joint conference on artificial intelligence, Pasadena, CA., July 11\u201317; 2009, pp. 1936\u20131942."},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib94","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1111\/j.1467-9868.2011.01007.x","article-title":"A full scale approximation of covariance functions for large spatial data sets","volume":"74","author":"Sang","year":"2012","journal-title":"J R Stat Soc Ser B (Stat Methodol)"},{"issue":"3","key":"10.1016\/j.ress.2014.09.014_bib95","doi-asserted-by":"crossref","first-page":"713","DOI":"10.1007\/s11222-010-9224-x","article-title":"Cases for the nugget in modeling computer experiments","volume":"22","author":"Gramacy","year":"2012","journal-title":"Stat Comput"},{"key":"10.1016\/j.ress.2014.09.014_bib96","doi-asserted-by":"crossref","first-page":"4215","DOI":"10.1016\/j.csda.2012.04.020","article-title":"The effect of the nugget on Gaussian process emulators of computer models","volume":"56","author":"Andrianakis","year":"2012","journal-title":"Comput Stat Data Anal"},{"key":"10.1016\/j.ress.2014.09.014_bib97","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1016\/j.cma.2013.07.011","article-title":"Virtual model validation of complex multiscale systems: applications to nonlinear elastostatics","volume":"266","author":"Oden","year":"2013","journal-title":"Comput Meth Appl Mech Eng"},{"key":"10.1016\/j.ress.2014.09.014_bib98","doi-asserted-by":"crossref","first-page":"1390","DOI":"10.1016\/j.ress.2005.11.035","article-title":"Validation and error estimation of computational models","volume":"91","author":"Rebba","year":"2006","journal-title":"Reliab Eng Syst Saf"},{"key":"10.1016\/j.ress.2014.09.014_bib99","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1057\/jos.2012.20","article-title":"Verification and validation of simulation models","volume":"7","author":"Sargent","year":"2013","journal-title":"J Simul"},{"key":"10.1016\/j.ress.2014.09.014_bib100","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1016\/j.ress.2012.11.011","article-title":"Quantitative model validation techniques: new insights","volume":"111","author":"Ling","year":"2013","journal-title":"Reliab EngSyst Saf"},{"issue":"6","key":"10.1016\/j.ress.2014.09.014_bib101","doi-asserted-by":"crossref","first-page":"1965","DOI":"10.2514\/1.C031808","article-title":"Using a simple crack growth model in predicting remaining useful life","volume":"49","author":"Coppe","year":"2012","journal-title":"J Aircr"},{"key":"10.1016\/j.ress.2014.09.014_bib102","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1115\/1.3662552","article-title":"A new approach to linear filtering and prediction problems","volume":"82","author":"Kalman","year":"1960","journal-title":"Trans ASME-J Basic Eng"},{"key":"10.1016\/j.ress.2014.09.014_bib103","unstructured":"He, W, Williard, N, Osterman, M, Pecht, M., Prognostics of lithium-ion batteries using extended Kalman filtering. In: Proceedings of IMAPS advanced technology workshop on high reliability microelectronics for military applications, Linthicum Heights, MD, USA; May 2011, pp. 17\u201319."},{"key":"10.1016\/j.ress.2014.09.014_bib104","series-title":"Sequential Monte Carlo methods in practice","author":"Doucet","year":"2001"},{"key":"10.1016\/j.ress.2014.09.014_bib105","doi-asserted-by":"crossref","unstructured":"Choi JH, An D, Gang J, Joo J, Kim NH. Bayesian approach for parameter estimation in the structural analysis and prognosis. In: Proceedings of the annual conference of the prognostics and health management society, Portland, OR; October 13\u201316, 2010.","DOI":"10.36001\/phmconf.2010.v2i1.1753"},{"key":"10.1016\/j.ress.2014.09.014_bib106","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1098\/rstl.1763.0053","article-title":"An essay towards solving a problem in the doctrine of chances","volume":"53","author":"Bayes","year":"1763","journal-title":"Philos Trans R Soc London"},{"issue":"4","key":"10.1016\/j.ress.2014.09.014_bib107","doi-asserted-by":"crossref","first-page":"221","DOI":"10.5391\/IJFIS.2007.7.4.221","article-title":"A particle filtering approach for on-line failure prognosis in a planetary carrier plate","volume":"7","author":"Orchard","year":"2007","journal-title":"Int J Fuzzy Logic Intell Syst"},{"key":"10.1016\/j.ress.2014.09.014_bib108","doi-asserted-by":"crossref","unstructured":"Daigle, M, Goebel, K., Multiple damage progression paths in model-based prognostics. In: IEEE Aerospace conference, Big Sky, Montana; 2011.","DOI":"10.1109\/AERO.2011.5747574"},{"issue":"11\u201312","key":"10.1016\/j.ress.2014.09.014_bib109","doi-asserted-by":"crossref","first-page":"828","DOI":"10.1016\/j.wear.2011.02.010","article-title":"In-situ monitoring and prediction of progressive joint wear using Bayesian statistics","volume":"270","author":"An","year":"2011","journal-title":"Wear"},{"key":"10.1016\/j.ress.2014.09.014_bib110","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.ress.2013.02.019","article-title":"Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab","volume":"115","author":"An","year":"2013","journal-title":"Reliab EngSyst Saf"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib111","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/00949659708811843","article-title":"Monte Carlo filter using the genetic algorithm operators","volume":"59","author":"Higuchi","year":"1997","journal-title":"J Stat Comput Simul"},{"issue":"400","key":"10.1016\/j.ress.2014.09.014_bib112","first-page":"1032","article-title":"Non\u2013Gaussian state space modeling of nonstationary time series (with Discussion),","volume":"82","author":"Kitagawa","year":"1987","journal-title":"J Am Stat Assoc"},{"key":"10.1016\/j.ress.2014.09.014_bib113","doi-asserted-by":"crossref","unstructured":"Wang, WP, Liao, S, Xing, TW., Particle filter for state and parameter estimation in passive ranging. In: IEEE international conference on intelligent computing and intelligent systems. Shanghai, China; 2009.","DOI":"10.1109\/ICICISYS.2009.5358175"},{"issue":"Part 1","key":"10.1016\/j.ress.2014.09.014_bib114","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1111\/1467-9868.00280","article-title":"Following a moving target-Monte Carlo inference for dynamic Bayesian models","volume":"63","author":"Gilks","year":"2001","journal-title":"R Stat Soc B"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib115","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1020281327116","article-title":"An introduction to MCMC for machine learning","volume":"50","author":"Andrieu","year":"2003","journal-title":"Mach Learn"},{"key":"10.1016\/j.ress.2014.09.014_bib116","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/j.probengmech.2010.07.010","article-title":"Sequential Monte Carlo filters for abruptly changing state estimation","volume":"26","author":"Kim","year":"2011","journal-title":"Probab Eng Mech"},{"key":"10.1016\/j.ress.2014.09.014_bib117","unstructured":"Merwe, Rvd, Doucet, A, Freitas, N. de, Wan, E., The unscented particle filter. In: NIPS; 2000, pp. 584\u2013590."},{"key":"10.1016\/j.ress.2014.09.014_bib118","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1016\/j.microrel.2012.12.004","article-title":"Remaining useful life prediction of lithium-ion battery with unscented particle filter technique","volume":"53","author":"Miao","year":"2013","journal-title":"Microelectron Reliab"},{"key":"10.1016\/j.ress.2014.09.014_bib119","first-page":"395","article-title":"Using the SIR algorithm to simulate posterior distributions","volume":"vol. 3","author":"Rubin","year":"1998"},{"issue":"6","key":"10.1016\/j.ress.2014.09.014_bib120","doi-asserted-by":"crossref","first-page":"1771","DOI":"10.1007\/s12206-013-0428-9","article-title":"Improved MCMC method for parameter estimation based on marginal probability density function","volume":"2","author":"An","year":"2013","journal-title":"J Mech Sci Technol"},{"key":"10.1016\/j.ress.2014.09.014_bib121","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1080\/10618600.1994.10474644","article-title":"On Markov Chain Monte Carlo acceleration","volume":"3","author":"Gelfand","year":"1994","journal-title":"J Comput Graph Stat"},{"issue":"3","key":"10.1016\/j.ress.2014.09.014_bib122","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1177\/1475921711424520","article-title":"Identification of correlated damage parameters under noise and bias using Bayesian inference","volume":"11","author":"An","year":"2012","journal-title":"Struct Health Monit"},{"key":"10.1016\/j.ress.2014.09.014_bib123","doi-asserted-by":"crossref","unstructured":"Gu, J, Azarian, MH, Pecht, MG., Failure prognostics of multilayer ceramic capacitors in temperature-humidity-bias conditions 2008. In: International conference on prognostics and health management, Denver, Colorado; October 6\u20139, 2008.","DOI":"10.1109\/PHM.2008.4711464"},{"key":"10.1016\/j.ress.2014.09.014_bib124","unstructured":"Coppe, A, Haftka, RT, Kim, NH, Yuan, FG., Reducing uncertainty in damage growth properties by structural health monitoring. In: Annual conference of the prognostics and health management society, San Diego, CA; September 27\u2013October 1, 2009."},{"key":"10.1016\/j.ress.2014.09.014_bib125","unstructured":"Guan, X, Liu, Y, Saxena, A, Celaya, J, Goebel, K., Entropy-based probabilistic fatigue damage prognosis and algorithmic performance comparison. In: Annual conference of the prognostics and health management society, San Diego, CA; September 27\u2013October 1, 2009."},{"issue":"2","key":"10.1016\/j.ress.2014.09.014_bib126","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1109\/TIM.2008.2005963","article-title":"Application of blind deconvolution denoising in failure prognosis","volume":"58","author":"Zhang","year":"2009","journal-title":"IEEE Tran Instrum Meas"},{"key":"10.1016\/j.ress.2014.09.014_bib127","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.aei.2004.08.001","article-title":"Robust performance degradation assessment methods for enhanced rolling element bearing prognostics","volume":"17","author":"Qiua","year":"2003","journal-title":"Adv Eng Inf"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib128","doi-asserted-by":"crossref","first-page":"81","DOI":"10.5539\/eer.v1n1p81","article-title":"Robust prognostics concept for gearbox with artificially induced gear crack utilizing acoustic emission","volume":"1","author":"Abouel-seoud","year":"2011","journal-title":"Energy Environ Res"},{"issue":"3","key":"10.1016\/j.ress.2014.09.014_bib129","doi-asserted-by":"crossref","first-page":"528","DOI":"10.1115\/1.3656900","article-title":"A critical analysis of crack propagation laws","volume":"85","author":"Paris","year":"1963","journal-title":"Trans ASME, J Basic Eng Ser D"},{"issue":"1","key":"10.1016\/j.ress.2014.09.014_bib130","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.ijfatigue.2007.03.004","article-title":"An engineering model of fatigue crack growth under variable amplitude loading","volume":"30","author":"Huang","year":"2008","journal-title":"Int J Fatigue"},{"key":"10.1016\/j.ress.2014.09.014_bib131","doi-asserted-by":"crossref","unstructured":"An, D, Choi, JH, Kim, NH., A comparison study of methods for parameter estimation in the physics-based prognostics. In: 53rd AIAA\/ASME\/ASCE\/AHS\/ASC structures, structural dynamics and materials conference, Honolulu, Hawaii; April 23\u201326, 2012.","DOI":"10.2514\/6.2012-1435"},{"issue":"2","key":"10.1016\/j.ress.2014.09.014_bib132","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1109\/78.978383","article-title":"Particle filters in state space models with the presence of unknown static parameters","volume":"50","author":"Storvik","year":"2002","journal-title":"IEEE Tran Signal Process"}],"container-title":["Reliability Engineering & System Safety"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832014002245?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0951832014002245?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,2]],"date-time":"2024-06-02T19:42:24Z","timestamp":1717357344000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0951832014002245"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2015,1]]},"references-count":132,"alternative-id":["S0951832014002245"],"URL":"https:\/\/doi.org\/10.1016\/j.ress.2014.09.014","relation":{},"ISSN":["0951-8320"],"issn-type":[{"value":"0951-8320","type":"print"}],"subject":[],"published":{"date-parts":[[2015,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Practical options for selecting data-driven or physics-based prognostics algorithms with reviews","name":"articletitle","label":"Article Title"},{"value":"Reliability Engineering & System Safety","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.ress.2014.09.014","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2014 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}