{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:45:21Z","timestamp":1732041921014},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,4,1]],"date-time":"2023-04-01T00:00:00Z","timestamp":1680307200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100004608","name":"Natural Science Foundation of Jiangsu Province","doi-asserted-by":"publisher","award":["BK20202007"],"id":[{"id":"10.13039\/501100004608","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003995","name":"Natural Science Foundation of Anhui Province","doi-asserted-by":"publisher","award":["2108085QE225"],"id":[{"id":"10.13039\/501100003995","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Robotics and Computer-Integrated Manufacturing"],"published-print":{"date-parts":[[2023,4]]},"DOI":"10.1016\/j.rcim.2022.102456","type":"journal-article","created":{"date-parts":[[2022,9,30]],"date-time":"2022-09-30T17:13:50Z","timestamp":1664558030000},"page":"102456","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["Digital twin driven production progress prediction for discrete manufacturing workshop"],"prefix":"10.1016","volume":"80","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7359-7405","authenticated-orcid":false,"given":"Weiwei","family":"Qian","sequence":"first","affiliation":[]},{"given":"Yu","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Hao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Shaohua","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Litong","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Hailang","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Weiguang","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Shanshan","family":"Zha","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.rcim.2022.102456_bib0001","doi-asserted-by":"crossref","first-page":"2204","DOI":"10.1109\/TII.2014.2351753","article-title":"Robust path diversity for network quality of service in cyber-physical systems","volume":"10","author":"Park","year":"2014","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.rcim.2022.102456_bib0002","doi-asserted-by":"crossref","first-page":"5790","DOI":"10.1109\/TII.2020.3047675","article-title":"Siamese Neural Network Based Few-Shot Learning for Anomaly Detection in Industrial Cyber-Physical Systems","volume":"17","author":"Zhou","year":"2020","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.rcim.2022.102456_bib0003","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2019.101837","article-title":"Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues","volume":"61","author":"Lu","year":"2020","journal-title":"Robot. Comput. Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102456_bib0004","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1007\/s00170-018-1617-6","article-title":"Digital twin-based smart production management and control framework for the complex product assembly shopfloor","volume":"96","author":"Zhuang","year":"2018","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.rcim.2022.102456_bib0005","series-title":"Digital Twin: Manufacturing Excellence through Virtual Factory Replication","author":"Grieves","year":"2015"},{"key":"10.1016\/j.rcim.2022.102456_bib0006","doi-asserted-by":"crossref","first-page":"20418","DOI":"10.1109\/ACCESS.2017.2756069","article-title":"Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing","volume":"5","author":"Tao","year":"2017","journal-title":"IEEE Access"},{"key":"10.1016\/j.rcim.2022.102456_bib0007","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.jmsy.2020.05.012","article-title":"How to model and implement connections between physical and virtual models for digital twin application","volume":"58","author":"Jiang","year":"2020","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102456_bib0008","doi-asserted-by":"crossref","first-page":"534","DOI":"10.1080\/17517575.2018.1526324","article-title":"The modeling and operations for the digital twin in the context of manufacturing","volume":"13","author":"Bao","year":"2019","journal-title":"Enterp. Inf. Syst."},{"key":"10.1016\/j.rcim.2022.102456_bib0009","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2020.101956","article-title":"Web-based digital twin modeling and remote control of cyber-physical production systems","author":"Liu","year":"2020","journal-title":"Robot. Comput. Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102456_bib0010","doi-asserted-by":"crossref","first-page":"1129","DOI":"10.1007\/s12652-018-0946-5","article-title":"Digital twin for CNC machine tool: modeling and using strategy","volume":"10","author":"Luo","year":"2019","journal-title":"J. Ambient Intell. Humaniz Comput."},{"key":"10.1016\/j.rcim.2022.102456_bib0011","first-page":"1","article-title":"Information modeling for cyber physical production system based on digital twin and AutomationML","author":"Zhang","year":"2020","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.rcim.2022.102456_bib0012","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1115\/1.4049634","article-title":"Multidimensional data modeling and model validation for digital twin workshop","volume":"21","author":"Qian","year":"2021","journal-title":"J. Comput. Inf. Sci. Eng."},{"key":"10.1016\/j.rcim.2022.102456_bib0013","doi-asserted-by":"crossref","first-page":"4274","DOI":"10.1016\/j.eswa.2011.09.106","article-title":"Pedestrian detection for intelligent transportation systems combining AdaBoost algorithm and support vector machine","volume":"39","author":"Guo","year":"2012","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.rcim.2022.102456_bib0014","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.enconman.2014.12.053","article-title":"Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions","volume":"92","author":"Liu","year":"2015","journal-title":"Energy Convers. Manag."},{"key":"10.1016\/j.rcim.2022.102456_bib0015","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.knosys.2016.12.019","article-title":"Dynamic financial distress prediction with concept drift based on time weighting combined with Adaboost support vector machine ensemble","volume":"120","author":"Sun","year":"2017","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.rcim.2022.102456_bib0016","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.rse.2019.111358","article-title":"Short and mid-term sea surface temperature prediction using time-series satellite data and LSTM-AdaBoost combination approach","volume":"233","author":"Xiao","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"10.1016\/j.rcim.2022.102456_bib0017","doi-asserted-by":"crossref","DOI":"10.1007\/s11069-021-04646-4","article-title":"Prediction of flooding in the downstream of the Three Gorges Reservoir based on a back propagation neural network optimized using the AdaBoost algorithm","author":"Xiong","year":"2021","journal-title":"Nat. Hazards"},{"key":"10.1016\/j.rcim.2022.102456_bib0018","doi-asserted-by":"crossref","first-page":"6425","DOI":"10.1109\/TII.2019.2938572","article-title":"Digital-twin-based job shop scheduling toward smart manufacturing","volume":"15","author":"Fang","year":"2019","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.rcim.2022.102456_bib0019","series-title":"17th IEEE International Conference on Automation Science and Engineering (CASE)","first-page":"771","article-title":"An adaptive evolutionary framework for the decision-making models of digital twin machining system","author":"Liu","year":"2021"},{"key":"10.1016\/j.rcim.2022.102456_bib0020","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102123","article-title":"Multi-scale evolution mechanism and knowledge construction of a digital twin mimic model","volume":"71","author":"Liu","year":"2021","journal-title":"Robot Comput. Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102456_bib0021","first-page":"20","article-title":"Model parameter regulation to make simulated trajectory of power-frequency process draw near measured trajectory based on trajectory sensitivity","volume":"30","author":"Liu","year":"2006","journal-title":"Power Syst. Technol."},{"key":"10.1016\/j.rcim.2022.102456_bib0022","doi-asserted-by":"crossref","first-page":"106","DOI":"10.3901\/JME.2021.22.106","article-title":"Digital twin driven remaining useful life prediction for aero-engine turbine discs","volume":"57","author":"Fu","year":"2021","journal-title":"J. Mech. Eng."},{"key":"10.1016\/j.rcim.2022.102456_bib0023","doi-asserted-by":"crossref","first-page":"10627","DOI":"10.1109\/JIOT.2019.2940131","article-title":"A two-stage transfer learning-based deep learning approach for production progress prediction in IoT-enabled manufacturing","volume":"6","author":"Huang","year":"2019","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.rcim.2022.102456_bib0024","doi-asserted-by":"crossref","DOI":"10.1016\/j.apenergy.2019.113315","article-title":"A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network","volume":"251","author":"Wang","year":"2019","journal-title":"Appl. Energy"},{"key":"10.1016\/j.rcim.2022.102456_bib0025","doi-asserted-by":"crossref","first-page":"281","DOI":"10.3233\/IDA-2004-8305","article-title":"Learning drifting concepts: example selection vs. example weighting","volume":"8","author":"Klinkenberg","year":"2004","journal-title":"Intell. Data Anal."},{"key":"10.1016\/j.rcim.2022.102456_bib0026","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.inffus.2019.07.006","article-title":"Class-imbalanced dynamic financial distress prediction based on Adaboost-SVM ensemble combined with SMOTE and time weighting","volume":"54","author":"Sun","year":"2020","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.rcim.2022.102456_bib0027","series-title":"18th IEEE International Conference on Image Processing","first-page":"3249","article-title":"A dataset for workflow recognition in industrial scenes","author":"Voulodimos","year":"2011"},{"key":"10.1016\/j.rcim.2022.102456_bib0028","series-title":"25th ACM SIGKDD International Conference","first-page":"2623","article-title":"Optuna: a next-generation hyperparameter optimization framework","author":"Akiba","year":"2019"}],"container-title":["Robotics and Computer-Integrated Manufacturing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0736584522001387?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0736584522001387?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,29]],"date-time":"2024-02-29T23:24:07Z","timestamp":1709249047000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0736584522001387"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4]]},"references-count":28,"alternative-id":["S0736584522001387"],"URL":"https:\/\/doi.org\/10.1016\/j.rcim.2022.102456","relation":{},"ISSN":["0736-5845"],"issn-type":[{"value":"0736-5845","type":"print"}],"subject":[],"published":{"date-parts":[[2023,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Digital twin driven production progress prediction for discrete manufacturing workshop","name":"articletitle","label":"Article Title"},{"value":"Robotics and Computer-Integrated Manufacturing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.rcim.2022.102456","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102456"}}