{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:07:40Z","timestamp":1735585660746},"reference-count":101,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,6]],"date-time":"2022-07-06T00:00:00Z","timestamp":1657065600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001866","name":"Fonds National de la Recherche Luxembourg","doi-asserted-by":"publisher","award":["16756339"],"id":[{"id":"10.13039\/501100001866","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Robotics and Computer-Integrated Manufacturing"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1016\/j.rcim.2022.102406","type":"journal-article","created":{"date-parts":[[2022,7,8]],"date-time":"2022-07-08T07:55:39Z","timestamp":1657266939000},"page":"102406","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["Multi-agent deep reinforcement learning based Predictive Maintenance on parallel machines"],"prefix":"10.1016","volume":"78","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1902-0100","authenticated-orcid":false,"given":"Marcelo Luis","family":"Ruiz Rodr\u00edguez","sequence":"first","affiliation":[]},{"given":"Sylvain","family":"Kubler","sequence":"additional","affiliation":[]},{"given":"Andrea","family":"de Giorgio","sequence":"additional","affiliation":[]},{"given":"Maxime","family":"Cordy","sequence":"additional","affiliation":[]},{"given":"J\u00e9r\u00e9my","family":"Robert","sequence":"additional","affiliation":[]},{"given":"Yves","family":"Le Traon","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.rcim.2022.102406_b1","article-title":"Inclusion of IoT, ML, and blockchain technologies in next generation Industry 4.0 environment","author":"Shrivastava","year":"2021","journal-title":"Mater. Today Proc."},{"key":"10.1016\/j.rcim.2022.102406_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.techfore.2021.120615","article-title":"A study to determine the effects of industry 4.0 technology components on organizational performance","volume":"167","author":"Cal\u0131\u015f Duman","year":"2021","journal-title":"Technol. Forecast. Soc. Change"},{"issue":"1","key":"10.1016\/j.rcim.2022.102406_b3","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/S0925-5273(00)00187-0","article-title":"A cost model of industrial maintenance for profitability analysis and benchmarking","volume":"79","author":"Komonen","year":"2002","journal-title":"Int. J. Prod. Econ."},{"key":"10.1016\/j.rcim.2022.102406_b4","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.106889","article-title":"Predictive maintenance in the Industry 4.0: A systematic literature review","volume":"150","author":"Zonta","year":"2020","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2020.101974","article-title":"A hybrid predictive maintenance approach for CNC machine tool driven by Digital Twin","volume":"65","author":"Luo","year":"2020","journal-title":"Robot. Comput. Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102406_b6","series-title":"Predictive maintenance and the digital supply network","author":"Coleman","year":"2022"},{"key":"10.1016\/j.rcim.2022.102406_b7","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.jmsy.2018.01.006","article-title":"Data-driven smart manufacturing","volume":"48","author":"Tao","year":"2018","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102281","article-title":"KSPMI: A knowledge-based system for predictive maintenance in Industry 4.0","volume":"74","author":"Cao","year":"2022","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102406_b9","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102230","article-title":"A digital twin-driven hybrid approach for the prediction of performance degradation in transmission unit of CNC machine tool","volume":"73","author":"Yang","year":"2022","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102406_b10","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.rcim.2018.09.007","article-title":"Single-machine-based joint optimization of predictive maintenance planning and production scheduling","volume":"55","author":"Liu","year":"2018","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102406_b11","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1016\/j.ifacol.2019.11.226","article-title":"Decision making in predictive maintenance: Literature review and research agenda for industry 4.0","volume":"52","author":"Bousdekis","year":"2019","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.rcim.2022.102406_b12","article-title":"Data-driven prescriptive maintenance toward fault-tolerant multiparametric control","author":"Gordon","year":"2021","journal-title":"AIChE J."},{"key":"10.1016\/j.rcim.2022.102406_b13","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.rcim.2019.01.012","article-title":"A knowledge based machine tool maintenance planning system using case-based reasoning techniques","volume":"58","author":"Wan","year":"2019","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102406_b14","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.procir.2018.08.318","article-title":"Challenges and opportunities of condition-based predictive maintenance: A review","volume":"78","author":"Sakib","year":"2018","journal-title":"Procedia CIRP"},{"key":"10.1016\/j.rcim.2022.102406_b15","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.jmsy.2020.11.019","article-title":"Event-driven tool condition monitoring methodology considering tool life prediction based on industrial internet","volume":"58","author":"Wang","year":"2021","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2019.101924","article-title":"In-process tool condition forecasting based on a deep learning method","volume":"64","author":"Sun","year":"2020","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102406_b17","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2020.103380","article-title":"A survey of machine-learning techniques for condition monitoring and predictive maintenance of bearings in grinding machines","volume":"125","author":"Schwendemann","year":"2021","journal-title":"Comput. Ind."},{"key":"10.1016\/j.rcim.2022.102406_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114060","article-title":"Machine learning and data mining in manufacturing","volume":"166","author":"Dogan","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.rcim.2022.102406_b19","series-title":"Machine Learning for Predictive and Prescriptive Analytics of Operational Data in Smart Manufacturing","first-page":"5","volume":"vol. 382 LNBIP","author":"Lepenioti","year":"2020"},{"key":"10.1016\/j.rcim.2022.102406_b20","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.jmsy.2021.05.001","article-title":"Towards online reinforced learning of assembly sequence planning with interactive guidance systems for industry 4.0 adaptive manufacturing","volume":"60","author":"de\u00a0Giorgio","year":"2021","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b21","series-title":"Reinforcement Learning: An Introduction","author":"Sutton","year":"2018"},{"key":"10.1016\/j.rcim.2022.102406_b22","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1016\/j.jmsy.2020.11.004","article-title":"Multi-agent system and reinforcement learning approach for distributed intelligence in a flexible smart manufacturing system","volume":"57","author":"Kim","year":"2020","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b23","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102283","article-title":"Real-time data-driven dynamic scheduling for flexible job shop with insufficient transportation resources using hybrid deep Q network","volume":"74","author":"Li","year":"2022","journal-title":"Robot. Comput.-Integr. Manuf."},{"issue":"7","key":"10.1016\/j.rcim.2022.102406_b24","doi-asserted-by":"crossref","first-page":"1089","DOI":"10.1016\/j.engappai.2009.01.014","article-title":"Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement approach","volume":"22","author":"Aissani","year":"2009","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"3","key":"10.1016\/j.rcim.2022.102406_b25","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1007\/BF00121681","article-title":"Machine scheduling with an availability constraint","volume":"9","author":"Lee","year":"1996","journal-title":"J. Global Optim."},{"issue":"1","key":"10.1016\/j.rcim.2022.102406_b26","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1007\/s10462-018-9667-6","article-title":"A state of the art review of intelligent scheduling","volume":"53","author":"Fazel\u00a0Zarandi","year":"2020","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.rcim.2022.102406_b27","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102311","article-title":"Sustainable service oriented equipment maintenance management of steel enterprises using a two-stage optimization approach","volume":"75","author":"Qin","year":"2022","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102406_b28","doi-asserted-by":"crossref","DOI":"10.1016\/j.cam.2020.113195","article-title":"A hybrid DBH-VNS for high-end equipment production scheduling with machine failures and preventive maintenance activities","volume":"384","author":"Lu","year":"2021","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.rcim.2022.102406_b29","article-title":"Online improvement of condition-based maintenance policy via Monte Carlo tree search","author":"Hoffman","year":"2021","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b30","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1016\/j.jmsy.2021.09.018","article-title":"Real-time integrated production-scheduling and maintenance-planning in a flexible job shop with machine deterioration and condition-based maintenance","volume":"61","author":"Ghaleb","year":"2021","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b31","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107553","article-title":"A three-stage decomposition algorithm for decentralized multi-project scheduling under uncertainty","volume":"160","author":"Liu","year":"2021","journal-title":"Comput. Ind. Eng."},{"issue":"4","key":"10.1016\/j.rcim.2022.102406_b32","first-page":"415","article-title":"Minimization of total tardiness in no-wait flowshop production systems with preventive maintenance","volume":"12","author":"Yamada","year":"2021","journal-title":"Int. J. Ind. Eng. Comput."},{"key":"10.1016\/j.rcim.2022.102406_b33","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2021.107304","article-title":"Joint planning of maintenance, buffer stock and quality control for unreliable, imperfect manufacturing systems","volume":"157","author":"Hadian","year":"2021","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b34","doi-asserted-by":"crossref","DOI":"10.1016\/j.ress.2021.107869","article-title":"Integrated production planning and preventive maintenance scheduling for synchronized parallel machines","volume":"215","author":"Liu","year":"2021","journal-title":"Reliab. Eng. Syst. Saf."},{"issue":"19","key":"10.1016\/j.rcim.2022.102406_b35","doi-asserted-by":"crossref","first-page":"5831","DOI":"10.1080\/00207543.2020.1791998","article-title":"Maintenance scheduling for flexible multistage manufacturing systems with uncertain demands","volume":"59","author":"Zhou","year":"2021","journal-title":"Int. J. Prod. Res."},{"key":"10.1016\/j.rcim.2022.102406_b36","doi-asserted-by":"crossref","DOI":"10.1016\/j.jclepro.2021.129191","article-title":"Sustainable operations-oriented painting process optimisation in automobile maintenance service","volume":"324","author":"Yang","year":"2021","journal-title":"J. Cleaner Prod."},{"key":"10.1016\/j.rcim.2022.102406_b37","doi-asserted-by":"crossref","first-page":"596","DOI":"10.1016\/j.jmsy.2021.04.010","article-title":"Distributed joint dynamic maintenance and production scheduling in manufacturing systems: Framework based on model predictive control and benders decomposition","volume":"59","author":"Rokhforoz","year":"2021","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b38","doi-asserted-by":"crossref","DOI":"10.1016\/j.compchemeng.2021.107268","article-title":"A rolling horizon approach for scheduling of multiproduct batch production and maintenance using generalized disjunctive programming models","volume":"148","author":"Wu","year":"2021","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b39","article-title":"Blockchain-secured multi-factory production with collaborative maintenance using Q learning-based optimisation approach","author":"Wang","year":"2021","journal-title":"Int. J. Prod. Res."},{"key":"10.1016\/j.rcim.2022.102406_b40","article-title":"Deep multi-agent reinforcement learning for multi-level preventive maintenance in manufacturing systems","volume":"192","author":"Su","year":"2021","journal-title":"Expert Syst. Appl."},{"issue":"11","key":"10.1016\/j.rcim.2022.102406_b41","doi-asserted-by":"crossref","first-page":"1448","DOI":"10.1177\/0954405420921733","article-title":"A two-stage integrating optimization of production scheduling, maintenance and quality","volume":"234","author":"Zheng","year":"2020","journal-title":"Proc. Inst. Mech. Eng. B"},{"key":"10.1016\/j.rcim.2022.102406_b42","doi-asserted-by":"crossref","DOI":"10.1155\/2020\/3974024","article-title":"Research on two-stage joint optimization problem of green manufacturing and maintenance for semiconductor wafer","volume":"2020","author":"Dong","year":"2020","journal-title":"Math. Probl. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b43","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.jmsy.2020.03.010","article-title":"Integrated maintenance and operations decision making with imperfect degradation state observations","volume":"55","author":"Celen","year":"2020","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b44","doi-asserted-by":"crossref","first-page":"45797","DOI":"10.1109\/ACCESS.2020.2977667","article-title":"Integrated intelligent green scheduling of predictive maintenance for complex equipment based on information services","volume":"8","author":"Mi","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.rcim.2022.102406_b45","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.jmsy.2019.12.004","article-title":"An approximate nondominated sorting genetic algorithm to integrate optimization of production scheduling and accurate maintenance based on reliability intervals","volume":"54","author":"Chen","year":"2020","journal-title":"J. Manuf. Syst."},{"issue":"4","key":"10.1016\/j.rcim.2022.102406_b46","doi-asserted-by":"crossref","first-page":"5613","DOI":"10.1109\/LRA.2020.3005626","article-title":"Novel energy-and maintenance-aware collaborative scheduling for a hybrid flow shop based on dual memetic algorithms","volume":"5","author":"Wang","year":"2020","journal-title":"IEEE Robot. Autom. Lett."},{"key":"10.1016\/j.rcim.2022.102406_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2020.106432","article-title":"Integrated production and maintenance scheduling for a single degrading machine with deterioration-based failures","volume":"143","author":"Ghaleb","year":"2020","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b48","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1016\/j.jmsy.2020.06.011","article-title":"New integration of preventive maintenance and production planning with cell formation and group scheduling for dynamic cellular manufacturing systems","volume":"56","author":"Alimian","year":"2020","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b49","article-title":"Green scheduling of jobs and flexible periods of maintenance in a two-machine flowshop to minimize makespan, a measure of service level and total energy consumption","volume":"2020","author":"Assia","year":"2020","journal-title":"Adv. Oper. Res."},{"key":"10.1016\/j.rcim.2022.102406_b50","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.113701","article-title":"Deep reinforcement learning based preventive maintenance policy for serial production lines","volume":"160","author":"Huang","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.rcim.2022.102406_b51","doi-asserted-by":"crossref","first-page":"470","DOI":"10.1016\/j.jmsy.2020.07.004","article-title":"Reinforcement learning for combined production-maintenance and quality control of a manufacturing system with deterioration failures","volume":"56","author":"Paraschos","year":"2020","journal-title":"J. Manuf. Syst."},{"issue":"1","key":"10.1016\/j.rcim.2022.102406_b52","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1007\/s10845-018-1434-7","article-title":"Establishment of maintenance inspection intervals: an application of process mining techniques in manufacturing","volume":"31","author":"Ruschel","year":"2020","journal-title":"J. Intell. Manuf."},{"issue":"9","key":"10.1016\/j.rcim.2022.102406_b53","doi-asserted-by":"crossref","first-page":"1529","DOI":"10.1080\/0305215X.2018.1540696","article-title":"Joint optimization of preventive maintenance and flexible flowshop sequence-dependent group scheduling considering multiple setups","volume":"51","author":"Feng","year":"2019","journal-title":"Eng. Optim."},{"key":"10.1016\/j.rcim.2022.102406_b54","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/j.jmsy.2019.11.002","article-title":"Imperfect corrective maintenance scheduling for energy efficient manufacturing systems through online task allocation method","volume":"53","author":"Yu","year":"2019","journal-title":"J. Manuf. Syst."},{"issue":"22","key":"10.1016\/j.rcim.2022.102406_b55","doi-asserted-by":"crossref","first-page":"4815","DOI":"10.3390\/app9224815","article-title":"Ant colony optimization algorithm for maintenance, repair and overhaul scheduling optimization in the context of industrie 4.0","volume":"9","author":"Tran","year":"2019","journal-title":"Appl. Sci."},{"key":"10.1016\/j.rcim.2022.102406_b56","article-title":"Multi-objective optimization for stochastic failure-prone job shop scheduling problem via hybrid of NSGA-II and simulation method","author":"Amelian","year":"2019","journal-title":"Expert Syst."},{"issue":"3","key":"10.1016\/j.rcim.2022.102406_b57","doi-asserted-by":"crossref","first-page":"918","DOI":"10.1080\/00207543.2018.1496294","article-title":"Minimising total completion time on single-machine scheduling with new integrated maintenance activities","volume":"57","author":"Chung","year":"2019","journal-title":"Int. J. Prod. Res."},{"issue":"1","key":"10.1016\/j.rcim.2022.102406_b58","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1080\/00207543.2018.1459923","article-title":"A mixed-integer linear programming model for integrated production and preventive maintenance scheduling in the capital goods industry","volume":"57","author":"Chansombat","year":"2019","journal-title":"Int. J. Prod. Res."},{"issue":"1","key":"10.1016\/j.rcim.2022.102406_b59","article-title":"An integrated optimization of quality control chart parameters and preventive maintenance using Markov chain","volume":"14","author":"Farahani","year":"2019","journal-title":"Adv. Prod. Eng. Manage."},{"issue":"1","key":"10.1016\/j.rcim.2022.102406_b60","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1007\/s11740-018-0855-7","article-title":"Reinforcement learning for opportunistic maintenance optimization","volume":"13","author":"Kuhnle","year":"2019","journal-title":"Prod. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b61","series-title":"IEEE International Conference on Automation Science and Engineering, Vol. 2019-Augus","first-page":"523","article-title":"Machine preventive replacement policy for serial production lines based on reinforcement learning","author":"Huang","year":"2019"},{"issue":"9","key":"10.1016\/j.rcim.2022.102406_b62","doi-asserted-by":"crossref","first-page":"3303","DOI":"10.1007\/s00170-018-2233-1","article-title":"Optimal maintenance control of machine tools for energy efficient manufacturing","volume":"104","author":"Xu","year":"2019","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.rcim.2022.102406_b63","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.ress.2018.04.004","article-title":"Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling","volume":"176","author":"Feng","year":"2018","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.rcim.2022.102406_b64","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.cie.2018.06.017","article-title":"A scatter simulated annealing algorithm for the bi-objective scheduling problem for the wet station of semiconductor manufacturing","volume":"123","author":"Pang","year":"2018","journal-title":"Comput. Ind. Eng."},{"issue":"1","key":"10.1016\/j.rcim.2022.102406_b65","doi-asserted-by":"crossref","first-page":"913","DOI":"10.3233\/JIFS-161385","article-title":"Joint optimization of preventive maintenance and production scheduling for parallel machines system","volume":"32","author":"Liao","year":"2017","journal-title":"J. Intell. Fuzzy Systems"},{"key":"10.1016\/j.rcim.2022.102406_b66","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cie.2017.03.027","article-title":"Distributed maintenance planning in manufacturing industries","volume":"108","author":"Upasani","year":"2017","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b67","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.compchemeng.2017.01.007","article-title":"Optimization of multipurpose process plant operations: A multi-time-scale maintenance and production scheduling approach","volume":"99","author":"Biondi","year":"2017","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b68","doi-asserted-by":"crossref","first-page":"576","DOI":"10.1109\/ACCESS.2017.2771827","article-title":"Reinforcement learning-based and parametric production-maintenance control policies for a deteriorating manufacturing system","volume":"6","author":"Xanthopoulos","year":"2017","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.rcim.2022.102406_b69","doi-asserted-by":"crossref","first-page":"1635","DOI":"10.1007\/s00500-015-1615-7","article-title":"Integrated rescheduling and preventive maintenance for arrival of new jobs through evolutionary multi-objective optimization","volume":"20","author":"Wang","year":"2016","journal-title":"Soft Comput."},{"issue":"12","key":"10.1016\/j.rcim.2022.102406_b70","doi-asserted-by":"crossref","first-page":"1945","DOI":"10.1016\/j.ifacol.2016.07.915","article-title":"An accelerated MIP model for the single machine scheduling with preventive maintenance","volume":"49","author":"Souissi","year":"2016","journal-title":"IFAC-PapersOnLine"},{"key":"10.1016\/j.rcim.2022.102406_b71","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.jmsy.2015.07.002","article-title":"Multi-objective optimization of parallel machine scheduling integrated with multi-resources preventive maintenance planning","volume":"37","author":"Wang","year":"2015","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b72","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.jmsy.2015.09.009","article-title":"A superimposition based approach for maintenance and quality plan optimization with production schedule, availability, repair time and detection time constraints for a single machine","volume":"37","author":"Tambe","year":"2015","journal-title":"J. Manuf. Syst."},{"issue":"4","key":"10.1016\/j.rcim.2022.102406_b73","doi-asserted-by":"crossref","DOI":"10.1115\/1.4030301","article-title":"Integrated maintenance decision-making and product sequencing in flexible manufacturing systems","volume":"137","author":"Celen","year":"2015","journal-title":"J. Manuf. Sci. Eng."},{"issue":"19","key":"10.1016\/j.rcim.2022.102406_b74","doi-asserted-by":"crossref","first-page":"5640","DOI":"10.1080\/00207543.2014.900200","article-title":"Decision-making on multi-mould maintenance in production scheduling","volume":"52","author":"Wong","year":"2014","journal-title":"Int. J. Prod. Res."},{"issue":"44","key":"10.1016\/j.rcim.2022.102406_b75","doi-asserted-by":"crossref","first-page":"17075","DOI":"10.1021\/ie5008807","article-title":"Optimal production and maintenance planning of biopharmaceutical manufacturing under performance decay","volume":"53","author":"Liu","year":"2014","journal-title":"Ind. Eng. Chem. Res."},{"issue":"5","key":"10.1016\/j.rcim.2022.102406_b76","doi-asserted-by":"crossref","first-page":"1743","DOI":"10.1007\/s00170-013-5122-7","article-title":"Optimisation of opportunistic maintenance of a multi-component system considering the effect of failures on quality and production schedule: A case study","volume":"69","author":"Tambe","year":"2013","journal-title":"Int. J. Adv. Manuf. Technol."},{"issue":"5","key":"10.1016\/j.rcim.2022.102406_b77","doi-asserted-by":"crossref","first-page":"1135","DOI":"10.1007\/s00170-012-4395-6","article-title":"Joint decision making for maintenance and production scheduling of production systems","volume":"66","author":"Lee","year":"2013","journal-title":"Int. J. Adv. Manuf. Technol."},{"issue":"2","key":"10.1016\/j.rcim.2022.102406_b78","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1016\/j.ijpe.2013.08.027","article-title":"Multi-objective preventive maintenance and replacement scheduling in a manufacturing system using goal programming","volume":"146","author":"Moghaddam","year":"2013","journal-title":"Int. J. Prod. Econ."},{"issue":"2","key":"10.1016\/j.rcim.2022.102406_b79","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1016\/j.jmsy.2013.01.002","article-title":"MIP formulation and heuristics for multi-stage capacitated lot-sizing and scheduling problem with availability constraints","volume":"32","author":"Ramezanian","year":"2013","journal-title":"J. Manuf. Syst."},{"issue":"20","key":"10.1016\/j.rcim.2022.102406_b80","doi-asserted-by":"crossref","first-page":"5683","DOI":"10.1080\/00207543.2011.613868","article-title":"A genetic algorithm approach for production scheduling with mould maintenance consideration","volume":"50","author":"Wong","year":"2012","journal-title":"Int. J. Prod. Res."},{"key":"10.1016\/j.rcim.2022.102406_b81","series-title":"International Conference on Hybrid Intelligent Systems","first-page":"350","article-title":"Deep reinforcement learning as a job shop scheduling solver: A literature review","author":"Cunha","year":"2018"},{"key":"10.1016\/j.rcim.2022.102406_b82","first-page":"62","article-title":"A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems","volume":"2","author":"Juan","year":"2015","journal-title":"Oper. Res. Perspect."},{"key":"10.1016\/j.rcim.2022.102406_b83","doi-asserted-by":"crossref","DOI":"10.1016\/j.cie.2019.106026","article-title":"Robust solutions in multi-objective stochastic permutation flow shop problem","volume":"137","author":"Gonz\u00e1lez-Neira","year":"2019","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b84","article-title":"Single-machine integrated production preventive maintenance scheduling: A simheuristic approach","volume":"36","author":"Halim","year":"2020","journal-title":"Matematika"},{"issue":"2","key":"10.1016\/j.rcim.2022.102406_b85","first-page":"311","article-title":"Why simheuristics? Benefits, limitations, and best practices when combining metaheuristics with simulation","volume":"44","author":"Chica","year":"2017","journal-title":"Stat. Oper. Res. Trans."},{"key":"10.1016\/j.rcim.2022.102406_b86","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1613\/jair.1.11396","article-title":"A survey on transfer learning for multiagent reinforcement learning systems","volume":"64","author":"Da Silva","year":"2019","journal-title":"J. Artificial Intelligence Res."},{"issue":"9","key":"10.1016\/j.rcim.2022.102406_b87","doi-asserted-by":"crossref","first-page":"3826","DOI":"10.1109\/TCYB.2020.2977374","article-title":"Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications","volume":"50","author":"Nguyen","year":"2020","journal-title":"IEEE Trans. Cybern."},{"issue":"2","key":"10.1016\/j.rcim.2022.102406_b88","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1080\/00224065.1993.11979431","article-title":"A review of the Weibull distribution","volume":"25","author":"Hallinan","year":"1993","journal-title":"J. Qual. Technol."},{"issue":"3","key":"10.1016\/j.rcim.2022.102406_b89","doi-asserted-by":"crossref","first-page":"643","DOI":"10.1016\/S0360-8352(97)00281-7","article-title":"An age reduction approach for finite horizon optimization of preventive maintenance for single units subject to random failures","volume":"34","author":"Dedopoulos","year":"1998","journal-title":"Comput. Ind. Eng."},{"key":"10.1016\/j.rcim.2022.102406_b90","series-title":"Proximal policy optimization algorithms","author":"Schulman","year":"2017"},{"key":"10.1016\/j.rcim.2022.102406_b91","series-title":"Proc 34th Int Conf Mach Learn, Vol. 70","first-page":"2778","article-title":"Curiosity-driven exploration by self-supervised prediction","author":"Pathak","year":"2017"},{"key":"10.1016\/j.rcim.2022.102406_b92","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102202","article-title":"Multi-agent reinforcement learning for online scheduling in smart factories","volume":"72","author":"Zhou","year":"2021","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102406_b93","doi-asserted-by":"crossref","unstructured":"J.N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counterfactual multi-agent policy gradients, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, 2018.","DOI":"10.1609\/aaai.v32i1.11794"},{"key":"10.1016\/j.rcim.2022.102406_b94","series-title":"35th International Conference on Machine Learning, ICML 2018, Vol. 10","first-page":"6846","article-title":"QMIX: Monotonic value function factorisation for deep multi-agent reinforcement learning","author":"Rashid","year":"2018"},{"key":"10.1016\/j.rcim.2022.102406_b95","series-title":"Is independent learning all you need in the starcraft multi-agent challenge?","author":"de\u00a0Witt","year":"2020"},{"key":"10.1016\/j.rcim.2022.102406_b96","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2021.102231","article-title":"A survey of robot learning strategies for human-robot collaboration in industrial settings","volume":"73","author":"Mukherjee","year":"2022","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.rcim.2022.102406_b97","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.swevo.2018.03.011","article-title":"Reinforcement learning versus evolutionary computation: A survey on hybrid algorithms","volume":"44","author":"Drugan","year":"2019","journal-title":"Swarm Evol. Comput."},{"key":"10.1016\/j.rcim.2022.102406_b98","series-title":"Maintenance Planning and Scheduling Handbook","author":"Palmer","year":"2019"},{"key":"10.1016\/j.rcim.2022.102406_b99","article-title":"Evaluation of human-AI teams for learned and rule-based agents in Hanabi","volume":"34","author":"Siu","year":"2021","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.rcim.2022.102406_b100","series-title":"AAAI 2020 - 34th AAAI Conference on Artificial Intelligence","first-page":"2493","article-title":"Explainable reinforcement learning through a causal lens","author":"Madumal","year":"2020"},{"key":"10.1016\/j.rcim.2022.102406_b101","unstructured":"Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, F. Doshi-Velez, Explainable reinforcement learning via reward decomposition, in: Proceedings of the IJCAI 2019 Workshop on Explainable Artificial Intelligence, 2019, pp. 47\u201353."}],"container-title":["Robotics and Computer-Integrated Manufacturing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0736584522000928?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0736584522000928?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,29]],"date-time":"2024-02-29T23:22:28Z","timestamp":1709248948000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0736584522000928"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12]]},"references-count":101,"alternative-id":["S0736584522000928"],"URL":"https:\/\/doi.org\/10.1016\/j.rcim.2022.102406","relation":{},"ISSN":["0736-5845"],"issn-type":[{"value":"0736-5845","type":"print"}],"subject":[],"published":{"date-parts":[[2022,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-agent deep reinforcement learning based Predictive Maintenance on parallel machines","name":"articletitle","label":"Article Title"},{"value":"Robotics and Computer-Integrated Manufacturing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.rcim.2022.102406","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"102406"}}