{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,12]],"date-time":"2024-07-12T13:55:27Z","timestamp":1720792527078},"reference-count":28,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,10,21]],"date-time":"2023-10-21T00:00:00Z","timestamp":1697846400000},"content-version":"vor","delay-in-days":293,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100005034","name":"Binus University","doi-asserted-by":"publisher","award":["029\/VRRTT\/III\/2023"],"id":[{"id":"10.13039\/501100005034","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Procedia Computer Science"],"published-print":{"date-parts":[[2023]]},"DOI":"10.1016\/j.procs.2023.10.529","type":"journal-article","created":{"date-parts":[[2023,11,25]],"date-time":"2023-11-25T16:59:39Z","timestamp":1700931579000},"page":"307-315","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Improving Supplier Evaluation Model using Ensemble Method-Machine Learning for Food Industry"],"prefix":"10.1016","volume":"227","author":[{"given":"Muhammad","family":"Asrol","sequence":"first","affiliation":[]},{"given":"Sofyan","family":"Wahyudi","sequence":"additional","affiliation":[]},{"family":"Suharjito","sequence":"additional","affiliation":[]},{"given":"Christian","family":"Harito","sequence":"additional","affiliation":[]},{"given":"Ditdit N","family":"Utama","sequence":"additional","affiliation":[]},{"given":"Muhammad","family":"Syafrudin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.procs.2023.10.529_bib0001","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.112903","article-title":"Decision-making techniques in supplier selection: Recent accomplishments and what lies ahead","volume":"140","author":"Chai","year":"2020","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.procs.2023.10.529_bib0002","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.ijinfomgt.2019.03.004","article-title":"A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing","volume":"49","author":"Cavalcante","year":"2019","journal-title":"International Journal of Information Management"},{"key":"10.1016\/j.procs.2023.10.529_bib0003","doi-asserted-by":"crossref","first-page":"1024","DOI":"10.1016\/j.promfg.2019.02.317","article-title":"Analyzing the Process of Supplier Selection Criteria and Methods","volume":"32","author":"Taherdoost","year":"2019","journal-title":"Procedia Manufacturing"},{"key":"10.1016\/j.procs.2023.10.529_bib0004","series-title":"Proc. 3rd Asia Pacific Int. Conf. Ind. Eng. Oper. Manag. Johor","first-page":"3893","article-title":"Supplier Performance Analysis in Food Industry\u202f: A Data Envelopment Analysis and Statistical Approach","author":"Asrol","year":"2022"},{"key":"10.1016\/j.procs.2023.10.529_bib0005","doi-asserted-by":"crossref","first-page":"6978","DOI":"10.1016\/j.eswa.2008.08.074","article-title":"Supplier selection based on hierarchical potential support vector machine","volume":"36","author":"Guo","year":"2009","journal-title":"Expert Systems with Applications"},{"issue":"1","key":"10.1016\/j.procs.2023.10.529_bib0006","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4018\/IJDSST.292449","article-title":"Optimal Strategy for Supplier Selection in a Global Supply Chain Using Machine Learning Technique","volume":"14","author":"Gaida","year":"2022","journal-title":"International Journal of Decision Support System Technology"},{"key":"10.1016\/j.procs.2023.10.529_bib0007","series-title":"3rd IEEE International Virtual Conference on Innovations in Power and Advanced Computing Technologies, i-PACT 2021","article-title":"A Hybrid Supplier Selection Approach Using Machine Learning and Data Envelopment Analysis","author":"Aggarwal","year":"2021"},{"issue":"2","key":"10.1016\/j.procs.2023.10.529_bib0008","first-page":"27","article-title":"Designing a Supplier Evaluation Model in the Cheese Industry Using Hybrid Method","volume":"20","author":"Wahyudi","year":"2022","journal-title":"Academic Journal of Manufacturing Engineering"},{"key":"10.1016\/j.procs.2023.10.529_bib0009","doi-asserted-by":"crossref","first-page":"42884","DOI":"10.1109\/ACCESS.2021.3065341","article-title":"A Hybrid Feature Selection Optimization Model for High Dimension Data Classification","volume":"9","author":"Qaraad","year":"2021","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.procs.2023.10.529_bib0010","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1109\/MCI.2015.2471235","article-title":"Ensemble Classification and Regression-Recent Developments, Applications and Future Directions","volume":"11","author":"Ren","year":"2016","journal-title":"IEEE Computational Intelligence Magazine"},{"issue":"2","key":"10.1016\/j.procs.2023.10.529_bib0011","doi-asserted-by":"crossref","first-page":"3887","DOI":"10.1016\/j.eswa.2008.02.045","article-title":"Long term supplier selection using a combined fuzzy MCDM approach: A case study for a telecommunication company","volume":"36","author":"\u00d6n\u00fct","year":"2009","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.procs.2023.10.529_bib0012","article-title":"Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS)","volume":"140","author":"\u017d","year":"2020","journal-title":"Computers & Industrial Engineering"},{"key":"10.1016\/j.procs.2023.10.529_bib0013","doi-asserted-by":"crossref","first-page":"443","DOI":"10.5267\/j.ijiec.2014.3.003","article-title":"An integrated MCDM approach to green supplier selection","volume":"5","author":"Yazdani","year":"2014","journal-title":"International Journal of Industrial Engineering Computations"},{"key":"10.1016\/j.procs.2023.10.529_bib0014","doi-asserted-by":"crossref","DOI":"10.1016\/j.dajour.2023.100238","article-title":"A decision support system for classifying supplier selection criteria using machine learning and random forest approach","volume":"7","author":"Ali","year":"2023","journal-title":"Decision Analytics Journal"},{"issue":"00","key":"10.1016\/j.procs.2023.10.529_bib0015","first-page":"1","article-title":"Resilient and sustainable supplier selection: an integration of SCOR 4.0 and machine learning approach","volume":"00","author":"Khan","year":"2023","journal-title":"Sustainable and Resilient Infrastructure"},{"key":"10.1016\/j.procs.2023.10.529_bib0016","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1613\/jair.614","article-title":"Popular Ensemble Methods: An Empirical Study","volume":"11","author":"Opitz","year":"1999","journal-title":"Journal of Artificial Intelligence Research"},{"key":"10.1016\/j.procs.2023.10.529_bib0017","doi-asserted-by":"crossref","unstructured":"Zhou Z-H. (2012). Ensemble Methods: Foundation and Algorithm. vol. 185. https:\/\/doi.org\/10.1016\/j.ress.2019.01.006.","DOI":"10.1201\/b12207"},{"key":"10.1016\/j.procs.2023.10.529_bib0018","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random Forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Machine Learning"},{"issue":"1","key":"10.1016\/j.procs.2023.10.529_bib0019","doi-asserted-by":"crossref","first-page":"20046","DOI":"10.1063\/1.5132473","article-title":"Ovarian cancer data classification using bagging and random forest","volume":"2168","author":"Arfiani","year":"2019","journal-title":"AIP Conference Proceedings"},{"key":"10.1016\/j.procs.2023.10.529_bib0020","first-page":"144","article-title":"Training Algorithm Margin for Optimal Classifiers","author":"Boser","year":"1992","journal-title":"Perception"},{"key":"10.1016\/j.procs.2023.10.529_bib0021","first-page":"1","article-title":"Efficient learning machines: Theories, concepts, and applications for engineers and system designers","author":"Awad","year":"2015","journal-title":"Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers"},{"key":"10.1016\/j.procs.2023.10.529_bib0022","doi-asserted-by":"crossref","unstructured":"Zheng A. (2015). Evaluating Machine Learning Models. Boston: O'Reilly Media; . https:\/\/doi.org\/10.1007\/978-1-4842-6537-6_7.","DOI":"10.1007\/978-1-4842-6537-6_7"},{"key":"10.1016\/j.procs.2023.10.529_bib0023","doi-asserted-by":"crossref","first-page":"854","DOI":"10.1016\/j.procs.2021.01.074","article-title":"Support Vector Machine with K-fold Validation to Improve the Industry \u2019 s Sustainability Performance Classification","volume":"179","author":"Asrol","year":"2021","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.procs.2023.10.529_bib0024","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.cor.2016.02.015","article-title":"Green supplier selection using fuzzy group decision making methods: A case study from the agri-food industry","volume":"89","author":"Banaeian","year":"2018","journal-title":"Computers and Operations Research"},{"issue":"2","key":"10.1016\/j.procs.2023.10.529_bib0025","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1108\/JHTI-07-2021-0169","article-title":"Supplier selection criteria in the Greek hotel food and beverage divisions","volume":"6","author":"Vasilakakis","year":"2022","journal-title":"Journal of Hospitality and Tourism Insights"},{"issue":"2","key":"10.1016\/j.procs.2023.10.529_bib0026","doi-asserted-by":"crossref","first-page":"316","DOI":"10.1016\/S1004-4132(08)60085-7","article-title":"Comparison on neural network and support vector machines in suppliers\u2019 selection","volume":"19","author":"Guosheng","year":"2008","journal-title":"Journal of System Engineering and Electronics"},{"key":"10.1016\/j.procs.2023.10.529_bib0027","first-page":"917","article-title":"A comparative study of supplier selection based on support vector machine and RBF neural networks","author":"Kong","year":"2013","journal-title":"International Asia Conference on Industrial Engineering and Management Innovation: Core Areas of Industrial Engineering, IEMI 2012 - Proceedings"},{"issue":"1","key":"10.1016\/j.procs.2023.10.529_bib0028","doi-asserted-by":"crossref","first-page":"12255","DOI":"10.1016\/j.ifacol.2017.08.2038","article-title":"A Hybrid DEA-Adaboost Model in Supplier Selection for Fuzzy Variable and Multiple Objectives","volume":"50","author":"Cheng","year":"2017","journal-title":"IFAC-PapersOnLine"}],"container-title":["Procedia Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050923016964?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050923016964?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,2,3]],"date-time":"2024-02-03T22:52:43Z","timestamp":1707000763000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1877050923016964"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":28,"alternative-id":["S1877050923016964"],"URL":"https:\/\/doi.org\/10.1016\/j.procs.2023.10.529","relation":{},"ISSN":["1877-0509"],"issn-type":[{"value":"1877-0509","type":"print"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Improving Supplier Evaluation Model using Ensemble Method-Machine Learning for Food Industry","name":"articletitle","label":"Article Title"},{"value":"Procedia Computer Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.procs.2023.10.529","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}