{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T06:41:05Z","timestamp":1723531265385},"reference-count":25,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,12]],"date-time":"2023-08-12T00:00:00Z","timestamp":1691798400000},"content-version":"vor","delay-in-days":223,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100020144","name":"Samsung Eletr\u00f4nica da Amaz\u00f4nia","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100020144","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002322","name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","doi-asserted-by":"publisher","award":["314523\/2009-0","88887.136410\/2017-00"],"id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","award":["465614\/2014-0"],"id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100006162","name":"Funda\u00e7\u00e3o de Amparo \u00e0 Ci\u00eancia e Tecnologia do Estado de Pernambuco","doi-asserted-by":"publisher","award":["APQ-0399-1.03\/17","APQ\/0388-1.03\/14"],"id":[{"id":"10.13039\/501100006162","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007257","name":"Instituto Nacional de Ci\u00eancia e Tecnologia para Engenharia de Software","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100007257","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Procedia Computer Science"],"published-print":{"date-parts":[[2023]]},"DOI":"10.1016\/j.procs.2023.08.203","type":"journal-article","created":{"date-parts":[[2023,8,31]],"date-time":"2023-08-31T11:32:06Z","timestamp":1693481526000},"page":"656-665","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Exploring the Impact of Synthetic Data on Human Activity Recognition Tasks"],"prefix":"10.1016","volume":"222","author":[{"given":"Maynara Donato","family":"de Souza","sequence":"first","affiliation":[]},{"given":"Clesson Roberto Silva","family":"Junior","sequence":"additional","affiliation":[]},{"given":"Jonysberg","family":"Quintino","sequence":"additional","affiliation":[]},{"given":"Andr\u00e9 Luis","family":"Santos","sequence":"additional","affiliation":[]},{"given":"Fabio Q B","family":"da Silva","sequence":"additional","affiliation":[]},{"given":"Cleber","family":"Zanchettin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.procs.2023.08.203_bib0001","series-title":"International Conference on Machine Learning, PMLR","first-page":"290","article-title":"How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models","author":"Alaa","year":"2022"},{"key":"10.1016\/j.procs.2023.08.203_bib0002","article-title":"Diffusion-based time series imputation and forecasting with structured state space models","author":"Alcaraz","year":"2022","journal-title":"arXiv preprint"},{"key":"10.1016\/j.procs.2023.08.203_bib0003","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108148","article-title":"Improving the accuracy of global forecasting models using time series data augmentation","volume":"120","author":"Bandara","year":"2021","journal-title":"Pattern Recognition"},{"key":"10.1016\/j.procs.2023.08.203_bib0004","article-title":"Modeling temporal data as continuous functions with process diffusion","author":"Bilo\u0161","year":"2022","journal-title":"arXiv preprint"},{"key":"10.1016\/j.procs.2023.08.203_bib0005","series-title":"2015 IEEE International Conference on Image Processing (ICIP)","first-page":"168","article-title":"Utd-mhad: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor","author":"Chen","year":"2015"},{"key":"10.1016\/j.procs.2023.08.203_bib0006","unstructured":"Chen, P., Chen, G., Zhang, S., 2018. Log hyperbolic cosine loss improves variational auto-encoder."},{"key":"10.1016\/j.procs.2023.08.203_bib0007","doi-asserted-by":"crossref","DOI":"10.3390\/en13010130","article-title":"Generating energy data for machine learning with recurrent generative adversarial networks","volume":"13","author":"Fekri","year":"2019","journal-title":"Energies"},{"key":"10.1016\/j.procs.2023.08.203_bib0008","doi-asserted-by":"crossref","first-page":"2733","DOI":"10.3390\/math10152733","article-title":"Survey on synthetic data generation, evaluation methods and gans","volume":"10","author":"Figueira","year":"2022","journal-title":"Mathematics"},{"key":"10.1016\/j.procs.2023.08.203_bib0009","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1145\/3422622","article-title":"Generative adversarial networks","volume":"63","author":"Goodfellow","year":"2020","journal-title":"Communications of the ACM"},{"key":"10.1016\/j.procs.2023.08.203_bib0010","doi-asserted-by":"crossref","first-page":"275","DOI":"10.3390\/info13060275","article-title":"Human activity recognition for elderly people using machine and deep learning approaches","volume":"13","author":"Hayat","year":"2022","journal-title":"Information"},{"key":"10.1016\/j.procs.2023.08.203_bib0011","article-title":"Time series generation using diffusion models","author":"Ho","year":"2020","journal-title":"arXiv preprint"},{"key":"10.1016\/j.procs.2023.08.203_bib0012","article-title":"Prostategan: Mitigating data bias via prostate diffusion imaging synthesis with generative adversarial networks","author":"Hu","year":"2018","journal-title":"arXiv preprint"},{"key":"10.1016\/j.procs.2023.08.203_bib0013","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014","journal-title":"CoRR abs\/1412.6980"},{"key":"10.1016\/j.procs.2023.08.203_bib0014","article-title":"On convergence and stability of gans","author":"Kodali","year":"2017","journal-title":"arXiv preprint"},{"key":"10.1016\/j.procs.2023.08.203_bib0015","article-title":"Diffwave: A versatile diffusion model for audio synthesis","author":"Kong","year":"2020","journal-title":"arXiv preprint"},{"key":"10.1016\/j.procs.2023.08.203_bib0016","article-title":"Tts-gan: A transformer-based time-series generative adversarial network","author":"Li","year":"2022","journal-title":"arXiv preprint"},{"key":"10.1016\/j.procs.2023.08.203_bib0017","series-title":"Proceedings of the ACM Internet Measurement Conference","first-page":"464","article-title":"Using gans for sharing networked time series data: Challenges, initial promise, and open questions","author":"Lin","year":"2020"},{"key":"10.1016\/j.procs.2023.08.203_bib0018","series-title":"2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"3752","article-title":"Learning from synthetic data: Addressing domain shift for semantic segmentation","author":"Sankaranarayanan","year":"2018"},{"key":"10.1016\/j.procs.2023.08.203_bib0019","article-title":"Mixing real and synthetic data to enhance neural network training\u2013a review of current approaches","author":"Seib","year":"2020","journal-title":"arXiv preprint"},{"key":"10.1016\/j.procs.2023.08.203_bib0020","doi-asserted-by":"crossref","first-page":"8575","DOI":"10.1109\/JSEN.2020.3045135","article-title":"Deep convlstm with self-attention for human activity decoding using wearable sensors","volume":"21","author":"Singh","year":"2020","journal-title":"IEEE Sensors Journal"},{"key":"10.1016\/j.procs.2023.08.203_bib0021","article-title":"Simplified state space layers for sequence modeling","author":"Smith","year":"2022","journal-title":"arXiv preprint"},{"key":"10.1016\/j.procs.2023.08.203_bib0022","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition workshops","first-page":"969","article-title":"Training deep networks with synthetic data: Bridging the reality gap by domain randomization","author":"Tremblay","year":"2018"},{"key":"10.1016\/j.procs.2023.08.203_bib0023","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-021-95947-y","article-title":"Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning","volume":"11","author":"Uddin","year":"2021","journal-title":"Scientific Reports"},{"key":"10.1016\/j.procs.2023.08.203_bib0024","doi-asserted-by":"crossref","first-page":"548","DOI":"10.1016\/j.neucom.2021.12.097","article-title":"A wearable-har oriented sensory data generation method based on spatio-temporal reinforced conditional gans","volume":"493","author":"Wang","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.procs.2023.08.203_bib0025","first-page":"32","article-title":"Time-series generative adversarial networks","author":"Yoon","year":"2019"}],"container-title":["Procedia Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050923009687?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050923009687?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,13]],"date-time":"2023-11-13T16:13:36Z","timestamp":1699892016000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1877050923009687"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":25,"alternative-id":["S1877050923009687"],"URL":"https:\/\/doi.org\/10.1016\/j.procs.2023.08.203","relation":{},"ISSN":["1877-0509"],"issn-type":[{"value":"1877-0509","type":"print"}],"subject":[],"published":{"date-parts":[[2023]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Exploring the Impact of Synthetic Data on Human Activity Recognition Tasks","name":"articletitle","label":"Article Title"},{"value":"Procedia Computer Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.procs.2023.08.203","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}