{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T08:43:37Z","timestamp":1725612217089},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,1,25]],"date-time":"2021-01-25T00:00:00Z","timestamp":1611532800000},"content-version":"vor","delay-in-days":24,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001871","name":"Funda\u00e7\u00e3o para a Ci\u00eancia e a Tecnologia","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001871","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Procedia Computer Science"],"published-print":{"date-parts":[[2021]]},"DOI":"10.1016\/j.procs.2021.01.249","type":"journal-article","created":{"date-parts":[[2021,2,23]],"date-time":"2021-02-23T02:05:06Z","timestamp":1614045906000},"page":"931-939","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["Atrial fibrillation classification based on MLP networks by extracting Jitter and Shimmer parameters"],"prefix":"10.1016","volume":"181","author":[{"given":"Pedro Henrique","family":"Borghi","sequence":"first","affiliation":[]},{"given":"Renata Coelho","family":"Borges","sequence":"additional","affiliation":[]},{"given":"Jo\u00e3o Paulo","family":"Teixeira","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.procs.2021.01.249_bib1","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/j.compbiomed.2018.07.001","article-title":"\"Automated detection of atrial fibrillation using long short-term memory network with RR interval signals,\"","volume":"102","author":"Faust","year":"2008","journal-title":"Comput. Biol. Med."},{"issue":"8","key":"10.1016\/j.procs.2021.01.249_bib2","doi-asserted-by":"crossref","first-page":"939","DOI":"10.1136\/heart.89.8.939","article-title":"\"Atrial fibrillation: Classification, pathophysiology, mechanism and drug treatment,\"","volume":"89","author":"Markides","year":"2003","journal-title":"Heart"},{"issue":"6","key":"10.1016\/j.procs.2021.01.249_bib3","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1109\/EMB-M.2006.250505","article-title":"\"Atrial fibrillation and waveform characterization: A time domain perspective in the surface ECG,\"","volume":"25","author":"Petrutiu","year":"2006","journal-title":"IEEE Engineering in Medicine and Biology Magazine"},{"key":"10.1016\/j.procs.2021.01.249_bib4","doi-asserted-by":"crossref","first-page":"800","DOI":"10.1016\/j.procs.2015.08.631","article-title":"\"Ambulatory Electrocardiogram Prototype,\"","volume":"64","author":"Teixeira","year":"2015","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.procs.2021.01.249_bib5","doi-asserted-by":"crossref","first-page":"109870","DOI":"10.1109\/ACCESS.2019.2933473","article-title":"\"Interpretability Analysis of Heartbeat Classification Based on Heartbeat Activity\u2019s Global Sequence Features and BiLSTM-Attention Neural Network,\"","volume":"7","author":"Li","year":"2019","journal-title":"IEEE Access"},{"issue":"August","key":"10.1016\/j.procs.2021.01.249_bib6","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1016\/j.compbiomed.2018.09.009","article-title":"\"Arrhythmia detection using deep convolutional neural network with long duration ECG signals,\"","volume":"102","author":"Y\u0131ld\u0131r\u0131m","year":"2018","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.procs.2021.01.249_bib7","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1007\/978-3-642-24352-3_33","article-title":"\"Electrocardiogram events detection,\"","volume":"221","author":"Teixeira","year":"2011","journal-title":"Communications in Computer and Information Science"},{"key":"10.1016\/j.procs.2021.01.249_bib8","unstructured":"Teixeira, J. P. and Freitas D. (2003). \u201cSegmental Durations Predicted With a Neural Network\", Proceedings of Eurospeech\u201903 \u2013 International Conference on Spoken Language Processing, Geneva. Pages 169-172."},{"key":"10.1016\/j.procs.2021.01.249_bib9","first-page":"229","article-title":"\"Hierarchical support vector machine based heartbeat classification using higher order statistics and hermite basis function,\"","volume":"35","author":"Park","year":"2008","journal-title":"Computers in Cardiology"},{"issue":"3","key":"10.1016\/j.procs.2021.01.249_bib10","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.cmpb.2011.10.002","article-title":"\"Feature extraction for ECG heartbeats using higher order statistics of WPD coefficients,\"","volume":"105","author":"Kutlu","year":"2012","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.procs.2021.01.249_bib11","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.knosys.2013.02.007","article-title":"\"Characterization of ECG beats from cardiac arrhythmia using discrete cosine transform in PCA framework,\"","volume":"45","author":"Martis","year":"2013","journal-title":"Knowledge-Based Syst."},{"key":"10.1016\/j.procs.2021.01.249_bib12","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1016\/j.eswa.2017.09.022","article-title":"\"Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system,\"","volume":"92","author":"P\u0142awiak","year":"2018","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.procs.2021.01.249_bib13","doi-asserted-by":"crossref","unstructured":"Rodrigues, P. M.; Teixeira, Jo\u00e3o Paulo. (2010) \u201cClassification of Electroencephalogram Signals Using Artificial Neural Networks\u201d. Proceedings of 3rd International Conference on BioMedical Engineering and Informatics (BMEI\u201910)","DOI":"10.1109\/BMEI.2010.5639941"},{"key":"10.1016\/j.procs.2021.01.249_bib14","doi-asserted-by":"crossref","first-page":"14195","DOI":"10.1109\/ACCESS.2017.2723258","article-title":"\"Life-threatening ventricular arrhythmia detection with personalized features,\"","volume":"5","author":"Cheng","year":"2017","journal-title":"IEEE Access"},{"key":"10.1016\/j.procs.2021.01.249_bib15","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1016\/j.ins.2016.01.082","article-title":"\"Deep learning approach for active classification of electrocardiogram signals,\"","volume":"345","author":"Rahhal","year":"2016","journal-title":"Inf. Sci. (Ny)."},{"key":"10.1016\/j.procs.2021.01.249_bib16","doi-asserted-by":"crossref","unstructured":"Rodrigues, Pedro M. and Teixeira, Jo\u00e3o Paulo, (2013). \u201cAlzheimer\u2019s Disease Recognition with Artificial Neural Networks\u201d - chapter 7 (pag. 102-119) of the book \u201cInformation Systems and Technologies for Enhancing Health and Social Care\u201d, by Ricardo Martinho, Rui Rijo, Maria Manuela Cunha and Jo\u00e3o Varaj\u00e3o. IGI Global. DOI: 10.4018\/978-1-4666-3667-5.","DOI":"10.4018\/978-1-4666-3667-5.ch007"},{"issue":"7","key":"10.1016\/j.procs.2021.01.249_bib17","doi-asserted-by":"crossref","DOI":"10.1142\/S0219519417400073","article-title":"\"Automated identification of coronary artery disease from short-term 12 lead electrocardiogram signals by using wavelet packet decomposition and common spatial pattern techniques,\"","volume":"17","author":"Oh","year":"2017","journal-title":"Journal of Mechanics in Medicine and Biology"},{"issue":"2","key":"10.1016\/j.procs.2021.01.249_bib18","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/j.bbe.2018.03.001","article-title":"\"Entropies for automated detection of coronary artery disease using ECG signals: A review,\"","volume":"38","author":"Acharya","year":"2018","journal-title":"Biocybernetics and Biomedical Engineering"},{"issue":"4","key":"10.1016\/j.procs.2021.01.249_bib19","first-page":"1","article-title":"\"Detection of Shockable Ventricular Arrhythmia using Variational Mode Decomposition,\"","volume":"40","author":"Tripathy, L. N. Sharma","year":"2016","journal-title":"J. Med. Syst."},{"issue":"2","key":"10.1016\/j.procs.2021.01.249_bib20","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1007\/s00034-014-9864-8","article-title":"\"Effect of Multiscale PCA De-noising in ECG Beat Classification for Diagnosis of Cardiovascular Diseases,\"","volume":"34","author":"Alickovic","year":"2015","journal-title":"Circuits, Syst. Signal Process."},{"issue":"10","key":"10.1016\/j.procs.2021.01.249_bib21","doi-asserted-by":"crossref","first-page":"1733","DOI":"10.1007\/s13042-017-0677-5","article-title":"\"A novel electrocardiogram arrhythmia classification method based on stacked sparse auto-encoders and softmax regression,\"","volume":"9","author":"Yang","year":"2018","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.procs.2021.01.249_bib22","first-page":"1","article-title":"\"Convolutional recurrent neural networks for electrocardiogram classification,\"","volume":"44","author":"Zihlmann, D. Perekrestenko","year":"2017","journal-title":"Computing in Cardiology"},{"issue":"4","key":"10.1016\/j.procs.2021.01.249_bib23","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1016\/j.aeue.2014.12.013","article-title":"\"Automatic ECG arrhythmia classification using dual tree complex wavelet based features,\"","volume":"69","author":"Thomas, M. K. Das","year":"2015","journal-title":"AEU - Int. J. Electron. Commun."},{"issue":"1","key":"10.1016\/j.procs.2021.01.249_bib24","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1109\/TBME.2011.2171037","article-title":"\"Weighted conditional random fields for supervised interpatient heartbeat classification,\"","volume":"59","author":"De Lannoy","year":"2012","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"5","key":"10.1016\/j.procs.2021.01.249_bib25","doi-asserted-by":"crossref","first-page":"778","DOI":"10.1016\/j.measurement.2009.01.004","article-title":"\"Cardiac arrhythmia diagnosis method using linear discriminant analysis on ECG signals,\"","volume":"42","author":"Yeh, W. J. Wang","year":"2009","journal-title":"Meas. J. Int. Meas. Confed."},{"key":"10.1016\/j.procs.2021.01.249_bib26","doi-asserted-by":"crossref","first-page":"145395","DOI":"10.1109\/ACCESS.2019.2939947","article-title":"\"A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks,\"","volume":"7","author":"Lynn, S. B. Pan","year":"2019","journal-title":"IEEE Access"},{"issue":"2019","key":"10.1016\/j.procs.2021.01.249_bib27","first-page":"000","article-title":"\"A Novel Deep Arrhythmia-Diagnosis Network for Atrial Fibrillation Classification Using Electrocardiogram Signals,\"","volume":"00","author":"Dang","year":"2019","journal-title":"IEEE Access, vol. 7, pp. 75577\u201375590, doi: 10.1109\/ACCESS.2019.2918792. Pedro Henrique Borghi et al. \/ Procedia Computer Science"},{"key":"10.1016\/j.procs.2021.01.249_bib28","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1016\/j.eswa.2018.08.011","article-title":"\"A deep learning approach for real-time detection of atrial fibrillation,\"","volume":"115","author":"Andersen, A. Peimankar","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.procs.2021.01.249_bib29","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1016\/j.compbiomed.2018.12.012","article-title":"\"Automated beat-wise arrhythmia diagnosis using modified U-net on extended electrocardiographic recordings with heterogeneous arrhythmia types,\"","volume":"105","author":"Oh","year":"2019","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.procs.2021.01.249_bib30","series-title":"Redes neurais: princ\u00edpios e pr\u00e1tica","author":"Haykin","year":"2007"},{"key":"10.1016\/j.procs.2021.01.249_bib31","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.procs.2016.09.155","article-title":"\"Algorithm for Jitter and Shimmer Measurement in Pathologic Voices,\"","volume":"100","author":"Teixeira","year":"2016","journal-title":"Procedia Computer Science"},{"key":"10.1016\/j.procs.2021.01.249_bib32","doi-asserted-by":"crossref","first-page":"678","DOI":"10.1016\/j.procs.2019.12.235","article-title":"\"Outliers Treatment to Improve the Recognition of Voice Pathologies,\"","volume":"164","author":"Silva","year":"2019","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.procs.2021.01.249_bib33","unstructured":"\u201cStandardized z-scores - MATLAB zscore.\u201d [Online]. Available: https:\/\/www.mathworks.com\/help\/stats\/zscore.html. [Acc.: 29-Apr-2020]."},{"key":"10.1016\/j.procs.2021.01.249_bib34","unstructured":"G. B. Moody and R. G. Mark. (1992) \u201cMIT-BIH Atrial Fibrillation Database.\u201d physionet.org, doi: 10.13026\/C2MW2D."},{"key":"10.1016\/j.procs.2021.01.249_bib35","unstructured":"S. H. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, and Peng C-K. (2003) \u201cPhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals.\u201d p. 5."},{"key":"10.1016\/j.procs.2021.01.249_bib36","unstructured":"\u201cMIT-BIH Atrial Fibrillation Database v1.0.0.\u201d [Online]. Available: https:\/\/physionet.org\/content\/afdb\/1.0.0\/. [Accessed: 29-Apr-2020]."},{"key":"10.1016\/j.procs.2021.01.249_bib37","doi-asserted-by":"crossref","DOI":"10.5334\/jors.bi","article-title":"\"An Open-source Toolbox for Analysing and Processing PhysioNet Databases in MATLAB and Octave,\"","volume":"2","author":"Silva","year":"2014","journal-title":"J. Open Res. Softw."},{"issue":"23","key":"10.1016\/j.procs.2021.01.249_bib38","doi-asserted-by":"crossref","DOI":"10.1161\/01.CIR.101.23.e215","article-title":"\"PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.,\"","volume":"101","author":"Goldberger","year":"2000","journal-title":"Circulation"}],"container-title":["Procedia Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050921002921?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050921002921?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,5,22]],"date-time":"2021-05-22T12:28:30Z","timestamp":1621686510000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1877050921002921"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":38,"alternative-id":["S1877050921002921"],"URL":"https:\/\/doi.org\/10.1016\/j.procs.2021.01.249","relation":{},"ISSN":["1877-0509"],"issn-type":[{"value":"1877-0509","type":"print"}],"subject":[],"published":{"date-parts":[[2021]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Atrial fibrillation classification based on MLP networks by extracting Jitter and Shimmer parameters","name":"articletitle","label":"Article Title"},{"value":"Procedia Computer Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.procs.2021.01.249","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2021 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}