{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T18:01:38Z","timestamp":1720720898154},"reference-count":19,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,9,18]],"date-time":"2020-09-18T00:00:00Z","timestamp":1600387200000},"content-version":"vor","delay-in-days":261,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Procedia Computer Science"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1016\/j.procs.2020.09.194","type":"journal-article","created":{"date-parts":[[2020,10,2]],"date-time":"2020-10-02T20:57:22Z","timestamp":1601672242000},"page":"1693-1702","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Net-TF-SW: Event Popularity Quantification with Network Structure"],"prefix":"10.1016","volume":"176","author":[{"given":"Hiroshi","family":"Nagaya","sequence":"first","affiliation":[]},{"given":"Teruaki","family":"Hayashi","sequence":"additional","affiliation":[]},{"given":"Yukio","family":"Ohsawa","sequence":"additional","affiliation":[]},{"given":"Fujio","family":"Toriumi","sequence":"additional","affiliation":[]},{"given":"Hiroyuki A.","family":"Torii","sequence":"additional","affiliation":[]},{"given":"Kazuko","family":"Uno","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.procs.2020.09.194_bib1","unstructured":"Athanasia, Ntalla, and Ponis T. Stavros. \u201cTwitter as an instrument for crisis response: The Typhoon Haiyan case study.\u201d The 12th International Conference on Information Systems for Crisis Response and Management. 2015."},{"key":"10.1016\/j.procs.2020.09.194_bib2","doi-asserted-by":"crossref","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","article-title":"\"Peeking inside the black-box: A survey on Explainable Artificial Intelligence (XAI).\"","volume":"6","author":"Adadi","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.procs.2020.09.194_bib3","doi-asserted-by":"crossref","unstructured":"Smith, Graham. \u201cUNSCEAR 2013 Report. Volume I: report to the General Assembly, Annex A: levels and effects of radiation exposure due to the nuclear accident after the 2011 great east-Japan earthquake and tsunami.\u201d (2014): 725.","DOI":"10.1088\/0952-4746\/34\/3\/B01"},{"key":"10.1016\/j.procs.2020.09.194_bib4","doi-asserted-by":"crossref","unstructured":"Normile, Dennis. \u201cEpidemic of fear.\u201d (2016): 1022--1023.","DOI":"10.1126\/science.351.6277.1022"},{"key":"10.1016\/j.procs.2020.09.194_bib5","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1038\/s41586-020-2008-3","article-title":"\"A new coronavirus associated with human respiratory disease in China.\"","volume":"579.7798","author":"Wu","year":"2020","journal-title":"Nature"},{"key":"10.1016\/j.procs.2020.09.194_bib6","unstructured":"WHO, \u201cCoronavirus disease 2019 (COVID-19) Situation Report - 59\u201d, https:\/\/who.int-source-reports\/20200319-sitrep-59-covid-19.pdf?sfvrsn=c3dcdef92"},{"key":"10.1016\/j.procs.2020.09.194_bib7","unstructured":"Ministry of Health. Labour and Welfare, Japan. \u201cAbout Coronavirus Disease 2019 (COVID-19).\u201d Available from: https:\/\/www.mhlw.go.jp\/stf\/seisakunitsuite\/bunya\/newpage00032.html"},{"key":"10.1016\/j.procs.2020.09.194_bib8","doi-asserted-by":"crossref","unstructured":"Toriumi, Fujio, et al. \u201cInformation sharing on Twitter during the 2011 catastrophic earthquake.\u201d Proceedings of the 22nd International Conference on World Wide Web. 2013.","DOI":"10.1145\/2487788.2488110"},{"key":"10.1016\/j.procs.2020.09.194_bib9","doi-asserted-by":"crossref","unstructured":"Sakaki, Takeshi, et al. \u201cRegional analysis of user interactions on social media in times of disaster.\u201d Proceedings of the 22nd International Conference on World Wide Web. 2013.","DOI":"10.1145\/2487788.2487909"},{"key":"10.1016\/j.procs.2020.09.194_bib10","article-title":"\"Twitter use in scientific communication revealed by visualization of information spreading by influencers within half a year after the Fukushima Daiichi nuclear power plant accident.\"","volume":"13.9","author":"Tsubokura","year":"2018","journal-title":"PloS one"},{"key":"10.1016\/j.procs.2020.09.194_bib11","doi-asserted-by":"crossref","unstructured":"Lee, Pei, Laks VS Lakshmanan, and Evangelos Milios. \u201cKeysee: Supporting keyword search on evolving events in social streams.\u201d Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013.","DOI":"10.1145\/2487575.2487711"},{"key":"10.1016\/j.procs.2020.09.194_bib12","doi-asserted-by":"crossref","unstructured":"Rong, Yu, Qiankun Zhu, and Hong Cheng. \u201cA model-free approach to infer the diffusion network from event cascade.\u201d Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. 2016.","DOI":"10.1145\/2983323.2983718"},{"key":"10.1016\/j.procs.2020.09.194_bib13","doi-asserted-by":"crossref","unstructured":"Tang, Yan, et al. \u201cESAP: a novel approach for cross-platform event dissemination trend analysis between social network and search engine.\u201d International Conference on Web Information Systems Engineering. Springer, Cham, 2016.","DOI":"10.1007\/978-3-319-48740-3_36"},{"key":"10.1016\/j.procs.2020.09.194_bib14","doi-asserted-by":"crossref","unstructured":"Gao, Tianxiang, et al. \u201cDancingLines: an analytical scheme to depict cross-platform event popularity.\u201d International Conference on Database and Expert Systems Applications. Springer, Cham, 2018.","DOI":"10.1007\/978-3-319-98809-2_18"},{"key":"10.1016\/j.procs.2020.09.194_bib15","doi-asserted-by":"crossref","unstructured":"Li, Jinning, et al. \u201cSENTI2POP: Sentiment-Aware Topic Popularity Prediction on Social Media.\u201d 2019 IEEE International Conference on Data Mining (ICDM). IEEE, 2019.","DOI":"10.1109\/ICDM.2019.00143"},{"key":"10.1016\/j.procs.2020.09.194_bib16","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1080\/00107510500052444","article-title":"\"Power laws, Pareto distributions and Zipf\u2019s law.\"","volume":"46.5","author":"Newman","year":"2005","journal-title":"Contemporary physics"},{"key":"10.1016\/j.procs.2020.09.194_bib17","article-title":"\"Distributed representations of words and phrases and their compositionality.\"","author":"Mikolov","year":"2013","journal-title":"Advances in neural information processing systems"},{"key":"10.1016\/j.procs.2020.09.194_bib18","unstructured":"Mihalcea, Rada, and Paul Tarau. \u201cTextrank: Bringing order into text.\u201d Proceedings of the 2004 conference on empirical methods in natural language processing. 2004."},{"key":"10.1016\/j.procs.2020.09.194_bib19","doi-asserted-by":"crossref","unstructured":"Brin, Sergey, and Lawrence Page. \u201cThe anatomy of a large-scale hypertextual web search engine.\u201d (1998).","DOI":"10.1016\/S0169-7552(98)00110-X"}],"container-title":["Procedia Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050920320962?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050920320962?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,11,25]],"date-time":"2020-11-25T21:59:29Z","timestamp":1606341569000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1877050920320962"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":19,"alternative-id":["S1877050920320962"],"URL":"https:\/\/doi.org\/10.1016\/j.procs.2020.09.194","relation":{},"ISSN":["1877-0509"],"issn-type":[{"value":"1877-0509","type":"print"}],"subject":[],"published":{"date-parts":[[2020]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Net-TF-SW: Event Popularity Quantification with Network Structure","name":"articletitle","label":"Article Title"},{"value":"Procedia Computer Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.procs.2020.09.194","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}