{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T17:28:16Z","timestamp":1720718896102},"reference-count":23,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,10,4]],"date-time":"2019-10-04T00:00:00Z","timestamp":1570147200000},"content-version":"vor","delay-in-days":276,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Procedia Computer Science"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1016\/j.procs.2019.09.466","type":"journal-article","created":{"date-parts":[[2019,11,21]],"date-time":"2019-11-21T16:09:42Z","timestamp":1574352582000},"page":"260-265","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Study of Named Entity Recognition methods in biomedical field"],"prefix":"10.1016","volume":"160","author":[{"given":"Anna","family":"\u015aniegula","sequence":"first","affiliation":[]},{"given":"Aneta","family":"Poniszewska-Mara\u0144da","sequence":"additional","affiliation":[]},{"given":"\u0141ukasz","family":"Chom\u0105tek","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.procs.2019.09.466_bib0001","first-page":"56","article-title":"\"Medical Entity Recognition: A Comparison of Semantic and Statistical Methods\"","volume":"11","author":"Abacha","year":"2011","journal-title":"Proceedings of BioNLP 2011 Workshop, BioNLP\u2019"},{"key":"10.1016\/j.procs.2019.09.466_bib0002","unstructured":"M. Allahyari and S. Pouriyeh and M. Assefi and S. Safaei and E. Trippe and J. B. Gutierrez and K. Kochut, \"A Brief Survey of Text Mining: Classifiation, Clustering and Extraction Techniques, 2017."},{"key":"10.1016\/j.procs.2019.09.466_bib0003","unstructured":"A. Baevski and S. Edunov and Y. Liu and L. Zettlemoyer and M. Auli, \"Cloze-driven Pretraining of Self-attention Networks\", http:\/\/arxiv.org\/abs\/1903.07785."},{"key":"10.1016\/j.procs.2019.09.466_bib0004","unstructured":"W. Boag and E. Sergeeva and S. Kulshreshtha and P. Szolovits and A. Rumshisky and T. Naumann, \"CliNER 2.0: Accessible and Accurate Clinical Concept Extraction, http:\/\/arxiv.org\/abs\/1803.02245."},{"key":"10.1016\/j.procs.2019.09.466_bib0005","first-page":"363","article-title":"\"Incorporating Non-local Information into Information Extraction Systems by Gibbs Sampling\"","volume":"05","author":"Finkel","year":"2005","journal-title":"Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL\u2019"},{"key":"10.1016\/j.procs.2019.09.466_bib0006","doi-asserted-by":"crossref","unstructured":"V. Hatzivassiloglou and P. A. Dubou\u00c3l\u2019 and A. Rzhetsky, \"Disambiguating proteins, genes, and RNA in text: A machine learning approach\" Suppl 1:S97\u2013106. ISSN 1367-4803.","DOI":"10.1093\/bioinformatics\/17.suppl_1.S97"},{"key":"10.1016\/j.procs.2019.09.466_bib0007","doi-asserted-by":"crossref","first-page":"3","DOI":"10.3115\/1034678.1034679","article-title":"\"Untangling Text Data Mining\"","volume":"99","author":"Hearst","year":"1999","journal-title":"Proceedings of 37th Annual Meeting of the Association for Computational Linguistics on Computational Linguistics, ACL\u2019"},{"issue":"1","key":"10.1016\/j.procs.2019.09.466_bib0008","doi-asserted-by":"crossref","first-page":"1414","DOI":"10.1016\/j.eswa.2011.08.024","article-title":"\"Customer churn prediction in telecommunications\"","volume":"39","author":"Huang","year":"2012","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.procs.2019.09.466_bib0009","unstructured":"R. Jiang and R. E. Banchs and H. Li, \"Evaluating and Combining Name Entity Recognition System\", pp. 21\u201327, https:\/\/aclweb.org\/anthology\/papers\/W\/W16\/W16-2703\/."},{"key":"10.1016\/j.procs.2019.09.466_bib00010","series-title":"\"Speech and Language Processing\"","author":"Jurafsky","year":"2015"},{"key":"10.1016\/j.procs.2019.09.466_bib00011","unstructured":"G. Lample and M. Ballesteros and S. Subramanian and K. Kawakami and C. Dyer, \"Neural Architectures for Named Entity Recognition, http:\/\/arxiv.org\/abs\/1603.01360."},{"key":"10.1016\/j.procs.2019.09.466_bib00012","unstructured":"S. M. Meystre and G. K. Savova and K. C. Kipper-Schuler and J. F. Hurdle, \"Extracting information from textual documents in the electronic health record: A review of recent research\", pp. 128\u2013144, ISSN 0943-4747."},{"issue":"1","key":"10.1016\/j.procs.2019.09.466_bib00013","first-page":"143","volume":"22","author":"Pradhan","year":"2018","journal-title":"Evaluating the state of the art in disorder recognition and normalization of the clinical narrative\""},{"issue":"3","key":"10.1016\/j.procs.2019.09.466_bib00014","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1007\/s12204-018-1954-5","article-title":"\"Research of Clinical Named Entity Recognition Based on Bi-LSTM-CRF\"","volume":"23","author":"Qin","year":"2018","journal-title":"Journal of Shanghai Jiaotong University (Science)"},{"key":"10.1016\/j.procs.2019.09.466_bib00015","doi-asserted-by":"crossref","first-page":"935","DOI":"10.1109\/BIBM.2018.8621360","article-title":"\"Fast and Accurate Recognition of Chinese Clinical Named Entities with Residual Dilated Convolutions\"","author":"Qiu","year":"2018","journal-title":"Proceedings of IEEE International Conference on Bioinformatics and Biomedicine (BIBM)"},{"key":"10.1016\/j.procs.2019.09.466_bib00016","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.procs.2016.09.123","article-title":"\"Named Entity Recognition Over Electronic Health Records Through a Combined Dictionary-based Approach\"","volume":"100","author":"Quimbaya","year":"2016","journal-title":"Procedia Computer Science"},{"issue":"3","key":"10.1016\/j.procs.2019.09.466_bib00017","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1016\/j.gie.2015.01.049","article-title":"\"Natural Language Processing As an Alternative to Manual Reporting of Colonoscopy Quality Metrics\"","volume":"82","author":"Gottumukkala","year":"2015","journal-title":"Gastrointestinal endoscopy"},{"issue":"11","key":"10.1016\/j.procs.2019.09.466_bib00018","first-page":"S5","volume":"9","author":"Sasaki","year":"2015","journal-title":"\"How to make the most of NE dictionaries in statistical NER\""},{"issue":"2","key":"10.1016\/j.procs.2019.09.466_bib00019","doi-asserted-by":"crossref","first-page":"158","DOI":"10.1186\/s12938-018-0573-6","article-title":"\"Comparison of named entity recognition methodologies in biomedical documents\"","volume":"17","author":"Song","year":"2018","journal-title":"BioMedical Engineering OnLine"},{"key":"10.1016\/j.procs.2019.09.466_bib00020","doi-asserted-by":"crossref","unstructured":"W. Sun and Z. Cai and Y. Li and F. Liu and S. Fang and G. Wang, \"Data Processing and Text Mining Technologies on Electronic Medical Records: A Review\", Journal of Healthcare Engineering, 2018:4302425, 2018.","DOI":"10.1155\/2018\/4302425"},{"key":"10.1016\/j.procs.2019.09.466_bib00021","unstructured":"C. Sutton and A. McCallum, An Introduction to Conditional Random Fields\", arXiv:1011.4088 [stat], November 2010."},{"key":"10.1016\/j.procs.2019.09.466_bib00022","first-page":"1812","article-title":"\"Clinical Named Entity Recognition Using Deep Learning Models\"","author":"Wu","year":"2018","journal-title":"Proceedings of AMIA Annual Symposium"},{"key":"10.1016\/j.procs.2019.09.466_bib00023","series-title":"\"Category Multi-representation: A Unified Solution for Named Entity Recognition in Clinical Texts\", Advances in Knowledge Discovery and Data Mining","first-page":"275","author":"Zhang","year":"2018"}],"container-title":["Procedia Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050919316813?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050919316813?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,21]],"date-time":"2019-11-21T16:09:59Z","timestamp":1574352599000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1877050919316813"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":23,"alternative-id":["S1877050919316813"],"URL":"https:\/\/doi.org\/10.1016\/j.procs.2019.09.466","relation":{},"ISSN":["1877-0509"],"issn-type":[{"value":"1877-0509","type":"print"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Study of Named Entity Recognition methods in biomedical field","name":"articletitle","label":"Article Title"},{"value":"Procedia Computer Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.procs.2019.09.466","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}