{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:50:04Z","timestamp":1732038604521},"reference-count":18,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"vor","delay-in-days":243,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Procedia Computer Science"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1016\/j.procs.2019.08.176","type":"journal-article","created":{"date-parts":[[2019,10,1]],"date-time":"2019-10-01T15:40:09Z","timestamp":1569944409000},"page":"345-352","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":23,"special_numbering":"C","title":["Enhancing the Performance of Library Book Recommendation System by Employing the Probabilistic-Keyword Model on a Collaborative Filtering Approach"],"prefix":"10.1016","volume":"157","author":[{"given":"Noor","family":"Ifada","sequence":"first","affiliation":[]},{"given":"Irvan","family":"Syachrudin","sequence":"additional","affiliation":[]},{"given":"Mochammad Kautsar","family":"Sophan","sequence":"additional","affiliation":[]},{"given":"Sri","family":"Wahyuni","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.procs.2019.08.176_bib0001","doi-asserted-by":"crossref","unstructured":"Chen C, Zhang L, Qiao H, Wang S, Liu Y, Qiu X. Book recommendation based on book-loan logs. In The 2012 International Conference on Asian Digital Libraries; 2012; Taiwan, China. p. 269-78.","DOI":"10.1007\/978-3-642-34752-8_33"},{"key":"10.1016\/j.procs.2019.08.176_bib0002","doi-asserted-by":"crossref","unstructured":"Jomsri P. Book recommendation system for digital library based on user profiles by using association rule. In The 4th edition of the International Conference on the Innovative Computing Technology (INTECH 2014); 2014; Luton, UK. p. 130-134.","DOI":"10.1109\/INTECH.2014.6927766"},{"issue":"1-2","key":"10.1016\/j.procs.2019.08.176_bib0003","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1007\/s11257-011-9112-x","article-title":"Recommender systems: From algorithms to user experience","volume":"22","author":"Konstan","year":"2012","journal-title":"User Modeling and User-Adapted Interaction."},{"key":"10.1016\/j.procs.2019.08.176_bib0004","doi-asserted-by":"crossref","unstructured":"Sarwar B, Karypis G, Konstan J, Riedl J. Item-based collaborative filtering recommendation algorithms. In The 10th International Conference on World Wide Web; 2001; Hongkong. p. 285-295.","DOI":"10.1145\/371920.372071"},{"issue":"6","key":"10.1016\/j.procs.2019.08.176_bib0005","doi-asserted-by":"crossref","first-page":"734","DOI":"10.1109\/TKDE.2005.99","article-title":"Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions","volume":"17","author":"Adomavicius","year":"2005","journal-title":"IEEE Transactions on Knowledge and Data Engineering."},{"key":"10.1016\/j.procs.2019.08.176_bib0006","doi-asserted-by":"crossref","unstructured":"Aggarwal CC. Recommender systems: The textbook: Springer; 2016.","DOI":"10.1007\/978-3-319-29659-3"},{"key":"10.1016\/j.procs.2019.08.176_bib0007","doi-asserted-by":"crossref","unstructured":"Ifada N, Nayak R. How relevant is the irrelevant data: Leveraging the tagging data for a learning-to-rank model. In The 19th ACM International Conference on Web Search and Data Mining; 2016; San Francisco, California, US. p. 23-32.","DOI":"10.1145\/2835776.2835790"},{"key":"10.1016\/j.procs.2019.08.176_bib0008","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.knosys.2013.12.007","article-title":"Merging trust in collaborative filtering to alleviate data sparsity and cold start","volume":"57","author":"Guo","year":"2014","journal-title":"Knowledge-Based Systems."},{"issue":"8","key":"10.1016\/j.procs.2019.08.176_bib0009","doi-asserted-by":"crossref","first-page":"883","DOI":"10.4304\/jsw.4.8.883-890","article-title":"Employing user attribute and item attribute to enhance the collaborative filtering recommendation","volume":"4","author":"Gong","year":"2009","journal-title":"Journal of Software."},{"key":"10.1016\/j.procs.2019.08.176_bib00010","doi-asserted-by":"crossref","unstructured":"Ifada N, Prasetyo EH, Mula\u2019ab. Employing sparsity removal approach and fuzzy c-means clustering technique on a movie recommendation system. In The 2010 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM); 2018; Surabaya, Indonesia. p. 157-162.","DOI":"10.1109\/CENIM.2018.8711270"},{"key":"10.1016\/j.procs.2019.08.176_bib00011","doi-asserted-by":"crossref","unstructured":"Chen Q, Li W, Liu J. Collaborative filtering algorithm based on item attribute and time weight. In The 2016 International Conference on Automatic Control and Information Engineering; 2016; Hongkong. p. 12-15.","DOI":"10.2991\/icacie-16.2016.3"},{"issue":"3","key":"10.1016\/j.procs.2019.08.176_bib00012","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/j.patrec.2011.10.016","article-title":"Improving neighborhood based collaborative filtering via integrated folksonomy information","volume":"33","author":"Luo","year":"2012","journal-title":"Pattern Recognition Letters."},{"issue":"1","key":"10.1016\/j.procs.2019.08.176_bib00013","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.elerap.2009.08.004","article-title":"Collaborative filtering based on collaborative tagging for enhancing the quality of recommendation","volume":"9","author":"Kim","year":"2010","journal-title":"Electronic Commerce Research and Applications."},{"key":"10.1016\/j.procs.2019.08.176_bib00014","series-title":"A two-stage item recommendation method using probabilistic ranking with reconstructed tensor model. In User modeling, adaptation, and personalization.","first-page":"98","author":"Ifada","year":"2014"},{"key":"10.1016\/j.procs.2019.08.176_bib00015","doi-asserted-by":"crossref","unstructured":"Ifada N, Nayak R. Tensor-based item recommendation using probabilistic ranking in social tagging systems. In The 23rd International Conference on World Wide Web Companion; 2014; Seoul, Korea. p. 805-810.","DOI":"10.1145\/2567948.2579243"},{"key":"10.1016\/j.procs.2019.08.176_bib00016","doi-asserted-by":"crossref","unstructured":"Baker LD, McCallum AK. Distributional clustering of words for text classification. In The 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval; 1998; Melbourne, Australia. p. 96-103.","DOI":"10.1145\/290941.290970"},{"key":"10.1016\/j.procs.2019.08.176_bib00017","series-title":"Content-based recommender systems: State of the art and trends. In Recommender systems handbook","first-page":"73","author":"Lops","year":"2011"},{"issue":"2","key":"10.1016\/j.procs.2019.08.176_bib00018","first-page":"81","article-title":"Collaborative filtering recommender systems","volume":"4","author":"Ekstrand","year":"2010","journal-title":"Human\u2013Computer Interaction."}],"container-title":["Procedia Computer Science"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050919310944?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1877050919310944?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,3]],"date-time":"2019-11-03T12:48:19Z","timestamp":1572785299000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1877050919310944"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":18,"alternative-id":["S1877050919310944"],"URL":"https:\/\/doi.org\/10.1016\/j.procs.2019.08.176","relation":{},"ISSN":["1877-0509"],"issn-type":[{"value":"1877-0509","type":"print"}],"subject":[],"published":{"date-parts":[[2019]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Enhancing the Performance of Library Book Recommendation System by Employing the Probabilistic-Keyword Model on a Collaborative Filtering Approach","name":"articletitle","label":"Article Title"},{"value":"Procedia Computer Science","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.procs.2019.08.176","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 The Author(s). Published by Elsevier B.V.","name":"copyright","label":"Copyright"}]}}